Maximize $~~|sum_{n=1}^N a_n|^2-maxlimits_{1leq kleq N}|sum_{n=1}^N(-1)^{delta_{k,n}}a_n|^2~~$ subject to...

Multi tool use
Multi tool use












1












$begingroup$


I wanted to solve the following optimization problem, where $delta_{k,n}$ is a Kronecker delta:
begin{eqnarray*}
~\
~textrm{Maximize}~~~left|sumlimits_{n=1}^N a_nright|^2-maxlimits_{1leq kleq N}left|sumlimits_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2\
textrm{subject to}~~sumlimits_{n=1}^{N}{{{left|a_nright|}^{2}}}=1,~~a_ninmathbb{C}, n=1,ldots N.\
end{eqnarray*}



I suspect that the maximum is reached for a uniform distribution of $a_ninmathbb{C}$, but I do not know where to start to prove it. For example, if ${{a}_{n}}=frac{1}{sqrt{N}}~forall n$, then $left|sum_{n=1}^N a_nright|^2=N$, $maxlimits_{1leq kleq N}left|sum_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2=frac{(N-2)^2}{N}$, and $left|sum_{n=1}^N a_nright|^2-maxlimits_{1leq kleq N}left|sum_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2=frac{4(N-1)}{N}$. Is this really a maximum if $a_ninmathbb{C}$? Any help is much appreciated. Any idea where I should start? Thank you.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    I wanted to solve the following optimization problem, where $delta_{k,n}$ is a Kronecker delta:
    begin{eqnarray*}
    ~\
    ~textrm{Maximize}~~~left|sumlimits_{n=1}^N a_nright|^2-maxlimits_{1leq kleq N}left|sumlimits_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2\
    textrm{subject to}~~sumlimits_{n=1}^{N}{{{left|a_nright|}^{2}}}=1,~~a_ninmathbb{C}, n=1,ldots N.\
    end{eqnarray*}



    I suspect that the maximum is reached for a uniform distribution of $a_ninmathbb{C}$, but I do not know where to start to prove it. For example, if ${{a}_{n}}=frac{1}{sqrt{N}}~forall n$, then $left|sum_{n=1}^N a_nright|^2=N$, $maxlimits_{1leq kleq N}left|sum_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2=frac{(N-2)^2}{N}$, and $left|sum_{n=1}^N a_nright|^2-maxlimits_{1leq kleq N}left|sum_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2=frac{4(N-1)}{N}$. Is this really a maximum if $a_ninmathbb{C}$? Any help is much appreciated. Any idea where I should start? Thank you.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      I wanted to solve the following optimization problem, where $delta_{k,n}$ is a Kronecker delta:
      begin{eqnarray*}
      ~\
      ~textrm{Maximize}~~~left|sumlimits_{n=1}^N a_nright|^2-maxlimits_{1leq kleq N}left|sumlimits_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2\
      textrm{subject to}~~sumlimits_{n=1}^{N}{{{left|a_nright|}^{2}}}=1,~~a_ninmathbb{C}, n=1,ldots N.\
      end{eqnarray*}



      I suspect that the maximum is reached for a uniform distribution of $a_ninmathbb{C}$, but I do not know where to start to prove it. For example, if ${{a}_{n}}=frac{1}{sqrt{N}}~forall n$, then $left|sum_{n=1}^N a_nright|^2=N$, $maxlimits_{1leq kleq N}left|sum_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2=frac{(N-2)^2}{N}$, and $left|sum_{n=1}^N a_nright|^2-maxlimits_{1leq kleq N}left|sum_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2=frac{4(N-1)}{N}$. Is this really a maximum if $a_ninmathbb{C}$? Any help is much appreciated. Any idea where I should start? Thank you.










      share|cite|improve this question









      $endgroup$




      I wanted to solve the following optimization problem, where $delta_{k,n}$ is a Kronecker delta:
      begin{eqnarray*}
      ~\
      ~textrm{Maximize}~~~left|sumlimits_{n=1}^N a_nright|^2-maxlimits_{1leq kleq N}left|sumlimits_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2\
      textrm{subject to}~~sumlimits_{n=1}^{N}{{{left|a_nright|}^{2}}}=1,~~a_ninmathbb{C}, n=1,ldots N.\
      end{eqnarray*}



      I suspect that the maximum is reached for a uniform distribution of $a_ninmathbb{C}$, but I do not know where to start to prove it. For example, if ${{a}_{n}}=frac{1}{sqrt{N}}~forall n$, then $left|sum_{n=1}^N a_nright|^2=N$, $maxlimits_{1leq kleq N}left|sum_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2=frac{(N-2)^2}{N}$, and $left|sum_{n=1}^N a_nright|^2-maxlimits_{1leq kleq N}left|sum_{n=1}^N(-1)^{delta_{k,n}}a_nright|^2=frac{4(N-1)}{N}$. Is this really a maximum if $a_ninmathbb{C}$? Any help is much appreciated. Any idea where I should start? Thank you.







      calculus sequences-and-series analysis optimization






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 14 '18 at 5:36









      HS TQHS TQ

      426




      426






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038995%2fmaximize-sum-n-1n-a-n2-max-limits-1-leq-k-leq-n-sum-n-1n-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038995%2fmaximize-sum-n-1n-a-n2-max-limits-1-leq-k-leq-n-sum-n-1n-1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          g8MkE N7Na,cZN3 mjzMiOzNSRVuVA1,X k2TR,cqeUR1EXmrq S,3jxORhcK2mG6DH8i nS4fCLqzPGQOmSLkbTSsHl1v5hIQ
          38AtfQw,U,b,Jjtj0ZtjT v1b b6,F,9XXCqJ,PWbQ2nvdllysV6O6aU4,F,cgzn 9yYsZL

          Popular posts from this blog

          mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

          Multiple Hosts connection in Hyperledger Fabric

          How to send String Array data to Server using php in android