Simplified form of $cos^{-1}big[frac{3}{5}cdotcos x+frac{4}{5}cdotsin xbig]$, where...
$begingroup$
Find the simplified form of $cos^{-1}bigg[dfrac{3}{5}cdotcos x+dfrac{4}{5}cdotsin xbigg]$, where $xinBig[dfrac{-3pi}{4},dfrac{3pi}{4}Big]$
My reference gives the solution $tan^{-1}frac43-x$, but is it a complete solution ?
My Attempt
Let $alpha=cos^{-1}dfrac{3}{5}implies dfrac{3}{5}=cosalpha,;dfrac{4}{5}=sinalpha$
$$
cos^{-1}bigg[dfrac{3}{5}cdotcos x+dfrac{4}{5}cdotsin xbigg]=cos^{-1}bigg[cosalphacdotcos x+sinalphacdotsin xbigg]\
=cos^{-1}bigg[cosBig(alpha-xBig)bigg]=2npipm(alpha-x)=2npipmBig(tan^{-1}frac{4}{3}-xBig)\
=tan^{-1}frac{4}{3}-xquadtext{iff }tan^{-1}frac{4}{3}-xin[0,pi]
$$
$$
-xinBig[dfrac{-3pi}{4},dfrac{3pi}{4}Big]quad&quadalpha=tan^{-1}frac{4}{3}inBig(0,frac{pi}{2}Big)\
impliesalpha-xinbig[frac{-3pi}{4},frac{5pi}{4}big]notsubset[0,pi]
$$
trigonometry inverse-function
$endgroup$
add a comment |
$begingroup$
Find the simplified form of $cos^{-1}bigg[dfrac{3}{5}cdotcos x+dfrac{4}{5}cdotsin xbigg]$, where $xinBig[dfrac{-3pi}{4},dfrac{3pi}{4}Big]$
My reference gives the solution $tan^{-1}frac43-x$, but is it a complete solution ?
My Attempt
Let $alpha=cos^{-1}dfrac{3}{5}implies dfrac{3}{5}=cosalpha,;dfrac{4}{5}=sinalpha$
$$
cos^{-1}bigg[dfrac{3}{5}cdotcos x+dfrac{4}{5}cdotsin xbigg]=cos^{-1}bigg[cosalphacdotcos x+sinalphacdotsin xbigg]\
=cos^{-1}bigg[cosBig(alpha-xBig)bigg]=2npipm(alpha-x)=2npipmBig(tan^{-1}frac{4}{3}-xBig)\
=tan^{-1}frac{4}{3}-xquadtext{iff }tan^{-1}frac{4}{3}-xin[0,pi]
$$
$$
-xinBig[dfrac{-3pi}{4},dfrac{3pi}{4}Big]quad&quadalpha=tan^{-1}frac{4}{3}inBig(0,frac{pi}{2}Big)\
impliesalpha-xinbig[frac{-3pi}{4},frac{5pi}{4}big]notsubset[0,pi]
$$
trigonometry inverse-function
$endgroup$
2
$begingroup$
At the very end, you mean $notsubset$ ("not a subset") instead of $notin$ ("not an element").
$endgroup$
– Barry Cipra
Dec 10 '18 at 12:34
add a comment |
$begingroup$
Find the simplified form of $cos^{-1}bigg[dfrac{3}{5}cdotcos x+dfrac{4}{5}cdotsin xbigg]$, where $xinBig[dfrac{-3pi}{4},dfrac{3pi}{4}Big]$
My reference gives the solution $tan^{-1}frac43-x$, but is it a complete solution ?
My Attempt
Let $alpha=cos^{-1}dfrac{3}{5}implies dfrac{3}{5}=cosalpha,;dfrac{4}{5}=sinalpha$
$$
cos^{-1}bigg[dfrac{3}{5}cdotcos x+dfrac{4}{5}cdotsin xbigg]=cos^{-1}bigg[cosalphacdotcos x+sinalphacdotsin xbigg]\
=cos^{-1}bigg[cosBig(alpha-xBig)bigg]=2npipm(alpha-x)=2npipmBig(tan^{-1}frac{4}{3}-xBig)\
=tan^{-1}frac{4}{3}-xquadtext{iff }tan^{-1}frac{4}{3}-xin[0,pi]
$$
$$
-xinBig[dfrac{-3pi}{4},dfrac{3pi}{4}Big]quad&quadalpha=tan^{-1}frac{4}{3}inBig(0,frac{pi}{2}Big)\
impliesalpha-xinbig[frac{-3pi}{4},frac{5pi}{4}big]notsubset[0,pi]
$$
trigonometry inverse-function
$endgroup$
Find the simplified form of $cos^{-1}bigg[dfrac{3}{5}cdotcos x+dfrac{4}{5}cdotsin xbigg]$, where $xinBig[dfrac{-3pi}{4},dfrac{3pi}{4}Big]$
My reference gives the solution $tan^{-1}frac43-x$, but is it a complete solution ?
My Attempt
Let $alpha=cos^{-1}dfrac{3}{5}implies dfrac{3}{5}=cosalpha,;dfrac{4}{5}=sinalpha$
$$
cos^{-1}bigg[dfrac{3}{5}cdotcos x+dfrac{4}{5}cdotsin xbigg]=cos^{-1}bigg[cosalphacdotcos x+sinalphacdotsin xbigg]\
=cos^{-1}bigg[cosBig(alpha-xBig)bigg]=2npipm(alpha-x)=2npipmBig(tan^{-1}frac{4}{3}-xBig)\
=tan^{-1}frac{4}{3}-xquadtext{iff }tan^{-1}frac{4}{3}-xin[0,pi]
$$
$$
-xinBig[dfrac{-3pi}{4},dfrac{3pi}{4}Big]quad&quadalpha=tan^{-1}frac{4}{3}inBig(0,frac{pi}{2}Big)\
impliesalpha-xinbig[frac{-3pi}{4},frac{5pi}{4}big]notsubset[0,pi]
$$
trigonometry inverse-function
trigonometry inverse-function
edited Dec 10 '18 at 12:54
ss1729
asked Dec 10 '18 at 11:21
ss1729ss1729
2,04411124
2,04411124
2
$begingroup$
At the very end, you mean $notsubset$ ("not a subset") instead of $notin$ ("not an element").
$endgroup$
– Barry Cipra
Dec 10 '18 at 12:34
add a comment |
2
$begingroup$
At the very end, you mean $notsubset$ ("not a subset") instead of $notin$ ("not an element").
$endgroup$
– Barry Cipra
Dec 10 '18 at 12:34
2
2
$begingroup$
At the very end, you mean $notsubset$ ("not a subset") instead of $notin$ ("not an element").
$endgroup$
– Barry Cipra
Dec 10 '18 at 12:34
$begingroup$
At the very end, you mean $notsubset$ ("not a subset") instead of $notin$ ("not an element").
$endgroup$
– Barry Cipra
Dec 10 '18 at 12:34
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your book is wrong. $xinBig[-3pi/4, 3pi/4Big]$, which is an interval of length $3pi/2$. Whatever be the value of $alpha, alpha-x$ will belong to an interval of length $3pi/2$, which means $alpha-x$ is not confined to $[0, pi].$
So the answer is $begin{cases}2pi-alpha+x,&xin[-3pi/4,alpha-pi)\alpha-x,&xin[alpha-pi,alpha]\x-alpha,&xin(alpha, 3pi/4]end{cases}$
$endgroup$
add a comment |
$begingroup$
$$-dfrac{3pi}4le xledfrac{3pi}4$$
$$iff-dfrac{3pi}4-cos^{-1}dfrac35le x-cos^{-1}dfrac35ledfrac{3pi}4-cos^{-1}dfrac35$$
Now $dfrac{3pi}4-cos^{-1}dfrac35lepi$ as $cos^{-1}dfrac35>0>dfrac{3pi}4-pi$
So, $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=x-cos^{-1}dfrac35$ if $x-cos^{-1}dfrac35ge0iff xgecos^{-1}dfrac35$
Again we can prove $-2pi<-dfrac{3pi}4-cos^{-1}dfrac35<-pi$
For $-pi<x-cos^{-1}dfrac35<0,$ $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=-left(x-cos^{-1}dfrac35right)$
For $-2pi<x-cos^{-1}dfrac35<-pi,$ $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=2pi+x-cos^{-1}dfrac35$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033793%2fsimplified-form-of-cos-1-big-frac35-cdot-cos-x-frac45-cdot-sin-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your book is wrong. $xinBig[-3pi/4, 3pi/4Big]$, which is an interval of length $3pi/2$. Whatever be the value of $alpha, alpha-x$ will belong to an interval of length $3pi/2$, which means $alpha-x$ is not confined to $[0, pi].$
So the answer is $begin{cases}2pi-alpha+x,&xin[-3pi/4,alpha-pi)\alpha-x,&xin[alpha-pi,alpha]\x-alpha,&xin(alpha, 3pi/4]end{cases}$
$endgroup$
add a comment |
$begingroup$
Your book is wrong. $xinBig[-3pi/4, 3pi/4Big]$, which is an interval of length $3pi/2$. Whatever be the value of $alpha, alpha-x$ will belong to an interval of length $3pi/2$, which means $alpha-x$ is not confined to $[0, pi].$
So the answer is $begin{cases}2pi-alpha+x,&xin[-3pi/4,alpha-pi)\alpha-x,&xin[alpha-pi,alpha]\x-alpha,&xin(alpha, 3pi/4]end{cases}$
$endgroup$
add a comment |
$begingroup$
Your book is wrong. $xinBig[-3pi/4, 3pi/4Big]$, which is an interval of length $3pi/2$. Whatever be the value of $alpha, alpha-x$ will belong to an interval of length $3pi/2$, which means $alpha-x$ is not confined to $[0, pi].$
So the answer is $begin{cases}2pi-alpha+x,&xin[-3pi/4,alpha-pi)\alpha-x,&xin[alpha-pi,alpha]\x-alpha,&xin(alpha, 3pi/4]end{cases}$
$endgroup$
Your book is wrong. $xinBig[-3pi/4, 3pi/4Big]$, which is an interval of length $3pi/2$. Whatever be the value of $alpha, alpha-x$ will belong to an interval of length $3pi/2$, which means $alpha-x$ is not confined to $[0, pi].$
So the answer is $begin{cases}2pi-alpha+x,&xin[-3pi/4,alpha-pi)\alpha-x,&xin[alpha-pi,alpha]\x-alpha,&xin(alpha, 3pi/4]end{cases}$
edited Dec 10 '18 at 12:00
answered Dec 10 '18 at 11:32
Shubham JohriShubham Johri
5,382818
5,382818
add a comment |
add a comment |
$begingroup$
$$-dfrac{3pi}4le xledfrac{3pi}4$$
$$iff-dfrac{3pi}4-cos^{-1}dfrac35le x-cos^{-1}dfrac35ledfrac{3pi}4-cos^{-1}dfrac35$$
Now $dfrac{3pi}4-cos^{-1}dfrac35lepi$ as $cos^{-1}dfrac35>0>dfrac{3pi}4-pi$
So, $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=x-cos^{-1}dfrac35$ if $x-cos^{-1}dfrac35ge0iff xgecos^{-1}dfrac35$
Again we can prove $-2pi<-dfrac{3pi}4-cos^{-1}dfrac35<-pi$
For $-pi<x-cos^{-1}dfrac35<0,$ $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=-left(x-cos^{-1}dfrac35right)$
For $-2pi<x-cos^{-1}dfrac35<-pi,$ $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=2pi+x-cos^{-1}dfrac35$
$endgroup$
add a comment |
$begingroup$
$$-dfrac{3pi}4le xledfrac{3pi}4$$
$$iff-dfrac{3pi}4-cos^{-1}dfrac35le x-cos^{-1}dfrac35ledfrac{3pi}4-cos^{-1}dfrac35$$
Now $dfrac{3pi}4-cos^{-1}dfrac35lepi$ as $cos^{-1}dfrac35>0>dfrac{3pi}4-pi$
So, $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=x-cos^{-1}dfrac35$ if $x-cos^{-1}dfrac35ge0iff xgecos^{-1}dfrac35$
Again we can prove $-2pi<-dfrac{3pi}4-cos^{-1}dfrac35<-pi$
For $-pi<x-cos^{-1}dfrac35<0,$ $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=-left(x-cos^{-1}dfrac35right)$
For $-2pi<x-cos^{-1}dfrac35<-pi,$ $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=2pi+x-cos^{-1}dfrac35$
$endgroup$
add a comment |
$begingroup$
$$-dfrac{3pi}4le xledfrac{3pi}4$$
$$iff-dfrac{3pi}4-cos^{-1}dfrac35le x-cos^{-1}dfrac35ledfrac{3pi}4-cos^{-1}dfrac35$$
Now $dfrac{3pi}4-cos^{-1}dfrac35lepi$ as $cos^{-1}dfrac35>0>dfrac{3pi}4-pi$
So, $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=x-cos^{-1}dfrac35$ if $x-cos^{-1}dfrac35ge0iff xgecos^{-1}dfrac35$
Again we can prove $-2pi<-dfrac{3pi}4-cos^{-1}dfrac35<-pi$
For $-pi<x-cos^{-1}dfrac35<0,$ $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=-left(x-cos^{-1}dfrac35right)$
For $-2pi<x-cos^{-1}dfrac35<-pi,$ $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=2pi+x-cos^{-1}dfrac35$
$endgroup$
$$-dfrac{3pi}4le xledfrac{3pi}4$$
$$iff-dfrac{3pi}4-cos^{-1}dfrac35le x-cos^{-1}dfrac35ledfrac{3pi}4-cos^{-1}dfrac35$$
Now $dfrac{3pi}4-cos^{-1}dfrac35lepi$ as $cos^{-1}dfrac35>0>dfrac{3pi}4-pi$
So, $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=x-cos^{-1}dfrac35$ if $x-cos^{-1}dfrac35ge0iff xgecos^{-1}dfrac35$
Again we can prove $-2pi<-dfrac{3pi}4-cos^{-1}dfrac35<-pi$
For $-pi<x-cos^{-1}dfrac35<0,$ $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=-left(x-cos^{-1}dfrac35right)$
For $-2pi<x-cos^{-1}dfrac35<-pi,$ $cos^{-1}bigg[cosBig(x-cos^{-1}dfrac35Big)bigg]=2pi+x-cos^{-1}dfrac35$
answered Dec 10 '18 at 11:51
lab bhattacharjeelab bhattacharjee
227k15158277
227k15158277
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033793%2fsimplified-form-of-cos-1-big-frac35-cdot-cos-x-frac45-cdot-sin-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
At the very end, you mean $notsubset$ ("not a subset") instead of $notin$ ("not an element").
$endgroup$
– Barry Cipra
Dec 10 '18 at 12:34