How to compute $sum_{j=1}^{n} {{n}choose {j}} cdot (-1)^{j+1} cdot frac{(n-j)^{n-1}}{n^{n-1}}$












3












$begingroup$


Hey I am wondering if the sum
$$sum_{j=1}^{n} {{n}choose {j}} cdot (-1)^{j+1} cdot frac{(n-j)^{n-1}}{n^{n-1}} = 1 $$
I got this formula from some question I tried to solve, the question is long so I will not post it here, but I am stuck with this sum, thanks for helping! I really do not know how to continue solving this sum, so how can i continue from here?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Is this even true for $n=2$? Seems false.
    $endgroup$
    – A. Pongrácz
    Dec 10 '18 at 11:36










  • $begingroup$
    @A.Pongrácz opps my bad, i meant one
    $endgroup$
    – משה לוי
    Dec 10 '18 at 12:09
















3












$begingroup$


Hey I am wondering if the sum
$$sum_{j=1}^{n} {{n}choose {j}} cdot (-1)^{j+1} cdot frac{(n-j)^{n-1}}{n^{n-1}} = 1 $$
I got this formula from some question I tried to solve, the question is long so I will not post it here, but I am stuck with this sum, thanks for helping! I really do not know how to continue solving this sum, so how can i continue from here?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Is this even true for $n=2$? Seems false.
    $endgroup$
    – A. Pongrácz
    Dec 10 '18 at 11:36










  • $begingroup$
    @A.Pongrácz opps my bad, i meant one
    $endgroup$
    – משה לוי
    Dec 10 '18 at 12:09














3












3








3


0



$begingroup$


Hey I am wondering if the sum
$$sum_{j=1}^{n} {{n}choose {j}} cdot (-1)^{j+1} cdot frac{(n-j)^{n-1}}{n^{n-1}} = 1 $$
I got this formula from some question I tried to solve, the question is long so I will not post it here, but I am stuck with this sum, thanks for helping! I really do not know how to continue solving this sum, so how can i continue from here?










share|cite|improve this question











$endgroup$




Hey I am wondering if the sum
$$sum_{j=1}^{n} {{n}choose {j}} cdot (-1)^{j+1} cdot frac{(n-j)^{n-1}}{n^{n-1}} = 1 $$
I got this formula from some question I tried to solve, the question is long so I will not post it here, but I am stuck with this sum, thanks for helping! I really do not know how to continue solving this sum, so how can i continue from here?







summation binomial-coefficients






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 11 '18 at 3:18









Martin Sleziak

44.9k10122276




44.9k10122276










asked Dec 10 '18 at 11:11









משה לוימשה לוי

565




565








  • 2




    $begingroup$
    Is this even true for $n=2$? Seems false.
    $endgroup$
    – A. Pongrácz
    Dec 10 '18 at 11:36










  • $begingroup$
    @A.Pongrácz opps my bad, i meant one
    $endgroup$
    – משה לוי
    Dec 10 '18 at 12:09














  • 2




    $begingroup$
    Is this even true for $n=2$? Seems false.
    $endgroup$
    – A. Pongrácz
    Dec 10 '18 at 11:36










  • $begingroup$
    @A.Pongrácz opps my bad, i meant one
    $endgroup$
    – משה לוי
    Dec 10 '18 at 12:09








2




2




$begingroup$
Is this even true for $n=2$? Seems false.
$endgroup$
– A. Pongrácz
Dec 10 '18 at 11:36




$begingroup$
Is this even true for $n=2$? Seems false.
$endgroup$
– A. Pongrácz
Dec 10 '18 at 11:36












$begingroup$
@A.Pongrácz opps my bad, i meant one
$endgroup$
– משה לוי
Dec 10 '18 at 12:09




$begingroup$
@A.Pongrácz opps my bad, i meant one
$endgroup$
– משה לוי
Dec 10 '18 at 12:09










3 Answers
3






active

oldest

votes


















2












$begingroup$

1st proof. The identity is equivalent to



$$ sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^{n-1} = 0. $$



Let us prove a slightly general identity. Let $m in {0, cdots, n-1}$. Then



begin{align*}
sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m
&= left. left(frac{d}{dx}right)^{m}sum_{j=0}^{n} binom{n}{j}(-1)^j e^{(n-j)x} right|_{x=0} \
&= left. left(frac{d}{dx}right)^{m} (e^x - 1)^n right|_{x=0} \
&= 0,
end{align*}



where the last line follows from the fact that $(e^x - 1)^n = x^n varphi_n(x)$ for some smooth function $varphi_n$.





2nd proof. Alternatively, fix $m geq 0$ and define $a_n = sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m$. Its exponential generating function satisfies



begin{align*}
sum_{n=0}^{infty} frac{a_n}{n!}x^n
&= sum_{n=0}^{infty} left( sum_{i+j=n} frac{(-1)^j i^m}{i!j!} right) x^n \
&= left( sum_{j=0}^{infty} frac{(-1)^j}{j!}x^j right)left( sum_{i=0}^{infty} frac{i^m}{i!}x^i right) \
&= e^{-x} left( x frac{d}{dx} right)^m e^x.
end{align*}



Now consider the operator $L$ defined by $L(f) = e^{-x} x frac{d}{dx} (e^x f)$. By a direct computation, we find that $L = x(1 + frac{d}{dx})$. So



$$ sum_{n=0}^{infty} frac{a_n}{n!}x^n = L^m(1). $$



But the operator $L$, applied to a polynomial of degree $d$, results in a polynomial of degree $d+1$. So $L^m(1)$ is a polynomial of degree $m$, and so, $a_n = 0$ for all $n > m$.






share|cite|improve this answer











$endgroup$





















    2












    $begingroup$

    Let $delta$ be the forward difference operator, bringing $p(x)$ into $(delta p)(x)=p(x+1)-p(x)$. This operator
    has the property that $deg pgeq 1$ gives $degdelta p=deg p-1$, hence $m>deg p$ implies $delta^m p(x)=0$.
    If we consider $p(x)=x^{n-1}$, then



    $$ 0=delta^{n} p(x)=sum_{k=0}^{n}binom{n}{k}(-1)^k p(x+k)=(-1)^nsum_{k=0}^{n}binom{n}{k}(-1)^k p(x+n-k) $$
    hence
    $$ sum_{k=0}^{n}binom{n}{k}(-1)^k (n-k)^{n-1} = 0 $$
    and
    $$ sum_{k=1}^{n}binom{n}{k}(-1)^{k+1} (n-k)^{n-1} = n^{n-1}. $$






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$




      $ds{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
      {pars{n - j}^{n - 1} over n^{n - 1}} = 1: {LARGE ?}}$
      .




      $ds{Hugeleft. aright)}$
      begin{align}
      &bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
      {pars{n - j}^{n - 1} over n^{n - 1}}}
      \[5mm] = &
      -,{1 over n^{n - 1}}sum_{j = 1}^{n}{n choose j}pars{-1}^{j},
      bracks{z^{n - 1}}bracks{pars{n - 1}!expo{pars{n - j}z}}
      \[5mm] = &
      -,{pars{n - 1}! over n^{n - 1}}
      bracks{z^{n - 1}}expo{nz}sum_{j = 1}^{n}{n choose j}
      pars{-expo{-z}}^{j}
      \[5mm] = &
      -,{pars{n - 1}! over n^{n - 1}}
      bracks{z^{n - 1}}expo{nz}bracks{pars{1 - expo{-z}}^{n} - 1}
      \[5mm] = &
      -,{pars{n - 1}! over n^{n - 1}}
      underbrace{bracks{z^{n - 1}}pars{expo{z} - 1}^{n}}
      _{ds{= {{n - 1 brace n} over pars{n - 1}!} = 0}} +
      {pars{n - 1}! over n^{n - 1}}
      underbrace{bracks{z^{n - 1}}expo{nz}}_{ds{n^{n - 1} over pars{n - 1}!}}
      \[5mm] = & bbx{large 1}
      end{align}




      $ds{m brace k}$ is the
      Stirling Number of the Second Kind which satisfies


      $ds{{m brace k} = 0 mbox{when} m < k}$.







      $ds{Hugeleft. bright) {largembox{The} "easy one !!!".quad}}$ ( see details in the above answer )
      begin{align}
      &bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
      {pars{n - j}^{n - 1} over n^{n - 1}}} =
      -,{pars{n - 1}! over n^{n - 1}}
      bracks{z^{n - 1}}pars{expo{z} - 1}^{n} + 1
      \[5mm] = &
      -,{pars{n - 1}! over n^{n - 1}}
      bracks{z^{-1}}pars{expo{z} - 1 over z}^{n} + 1
      \[5mm] = &
      -,{pars{n - 1}! over n^{n - 1}}
      underbrace{bracks{z^{-1}}bracks{sum_{k = 0}^{infty}
      {z^{k} over pars{k + 1}!}}^{n}}_{ds{= 0}} + 1 = bbx{large 1}
      end{align}





      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033782%2fhow-to-compute-sum-j-1n-n-choose-j-cdot-1j1-cdot-fracn%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        1st proof. The identity is equivalent to



        $$ sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^{n-1} = 0. $$



        Let us prove a slightly general identity. Let $m in {0, cdots, n-1}$. Then



        begin{align*}
        sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m
        &= left. left(frac{d}{dx}right)^{m}sum_{j=0}^{n} binom{n}{j}(-1)^j e^{(n-j)x} right|_{x=0} \
        &= left. left(frac{d}{dx}right)^{m} (e^x - 1)^n right|_{x=0} \
        &= 0,
        end{align*}



        where the last line follows from the fact that $(e^x - 1)^n = x^n varphi_n(x)$ for some smooth function $varphi_n$.





        2nd proof. Alternatively, fix $m geq 0$ and define $a_n = sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m$. Its exponential generating function satisfies



        begin{align*}
        sum_{n=0}^{infty} frac{a_n}{n!}x^n
        &= sum_{n=0}^{infty} left( sum_{i+j=n} frac{(-1)^j i^m}{i!j!} right) x^n \
        &= left( sum_{j=0}^{infty} frac{(-1)^j}{j!}x^j right)left( sum_{i=0}^{infty} frac{i^m}{i!}x^i right) \
        &= e^{-x} left( x frac{d}{dx} right)^m e^x.
        end{align*}



        Now consider the operator $L$ defined by $L(f) = e^{-x} x frac{d}{dx} (e^x f)$. By a direct computation, we find that $L = x(1 + frac{d}{dx})$. So



        $$ sum_{n=0}^{infty} frac{a_n}{n!}x^n = L^m(1). $$



        But the operator $L$, applied to a polynomial of degree $d$, results in a polynomial of degree $d+1$. So $L^m(1)$ is a polynomial of degree $m$, and so, $a_n = 0$ for all $n > m$.






        share|cite|improve this answer











        $endgroup$


















          2












          $begingroup$

          1st proof. The identity is equivalent to



          $$ sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^{n-1} = 0. $$



          Let us prove a slightly general identity. Let $m in {0, cdots, n-1}$. Then



          begin{align*}
          sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m
          &= left. left(frac{d}{dx}right)^{m}sum_{j=0}^{n} binom{n}{j}(-1)^j e^{(n-j)x} right|_{x=0} \
          &= left. left(frac{d}{dx}right)^{m} (e^x - 1)^n right|_{x=0} \
          &= 0,
          end{align*}



          where the last line follows from the fact that $(e^x - 1)^n = x^n varphi_n(x)$ for some smooth function $varphi_n$.





          2nd proof. Alternatively, fix $m geq 0$ and define $a_n = sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m$. Its exponential generating function satisfies



          begin{align*}
          sum_{n=0}^{infty} frac{a_n}{n!}x^n
          &= sum_{n=0}^{infty} left( sum_{i+j=n} frac{(-1)^j i^m}{i!j!} right) x^n \
          &= left( sum_{j=0}^{infty} frac{(-1)^j}{j!}x^j right)left( sum_{i=0}^{infty} frac{i^m}{i!}x^i right) \
          &= e^{-x} left( x frac{d}{dx} right)^m e^x.
          end{align*}



          Now consider the operator $L$ defined by $L(f) = e^{-x} x frac{d}{dx} (e^x f)$. By a direct computation, we find that $L = x(1 + frac{d}{dx})$. So



          $$ sum_{n=0}^{infty} frac{a_n}{n!}x^n = L^m(1). $$



          But the operator $L$, applied to a polynomial of degree $d$, results in a polynomial of degree $d+1$. So $L^m(1)$ is a polynomial of degree $m$, and so, $a_n = 0$ for all $n > m$.






          share|cite|improve this answer











          $endgroup$
















            2












            2








            2





            $begingroup$

            1st proof. The identity is equivalent to



            $$ sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^{n-1} = 0. $$



            Let us prove a slightly general identity. Let $m in {0, cdots, n-1}$. Then



            begin{align*}
            sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m
            &= left. left(frac{d}{dx}right)^{m}sum_{j=0}^{n} binom{n}{j}(-1)^j e^{(n-j)x} right|_{x=0} \
            &= left. left(frac{d}{dx}right)^{m} (e^x - 1)^n right|_{x=0} \
            &= 0,
            end{align*}



            where the last line follows from the fact that $(e^x - 1)^n = x^n varphi_n(x)$ for some smooth function $varphi_n$.





            2nd proof. Alternatively, fix $m geq 0$ and define $a_n = sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m$. Its exponential generating function satisfies



            begin{align*}
            sum_{n=0}^{infty} frac{a_n}{n!}x^n
            &= sum_{n=0}^{infty} left( sum_{i+j=n} frac{(-1)^j i^m}{i!j!} right) x^n \
            &= left( sum_{j=0}^{infty} frac{(-1)^j}{j!}x^j right)left( sum_{i=0}^{infty} frac{i^m}{i!}x^i right) \
            &= e^{-x} left( x frac{d}{dx} right)^m e^x.
            end{align*}



            Now consider the operator $L$ defined by $L(f) = e^{-x} x frac{d}{dx} (e^x f)$. By a direct computation, we find that $L = x(1 + frac{d}{dx})$. So



            $$ sum_{n=0}^{infty} frac{a_n}{n!}x^n = L^m(1). $$



            But the operator $L$, applied to a polynomial of degree $d$, results in a polynomial of degree $d+1$. So $L^m(1)$ is a polynomial of degree $m$, and so, $a_n = 0$ for all $n > m$.






            share|cite|improve this answer











            $endgroup$



            1st proof. The identity is equivalent to



            $$ sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^{n-1} = 0. $$



            Let us prove a slightly general identity. Let $m in {0, cdots, n-1}$. Then



            begin{align*}
            sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m
            &= left. left(frac{d}{dx}right)^{m}sum_{j=0}^{n} binom{n}{j}(-1)^j e^{(n-j)x} right|_{x=0} \
            &= left. left(frac{d}{dx}right)^{m} (e^x - 1)^n right|_{x=0} \
            &= 0,
            end{align*}



            where the last line follows from the fact that $(e^x - 1)^n = x^n varphi_n(x)$ for some smooth function $varphi_n$.





            2nd proof. Alternatively, fix $m geq 0$ and define $a_n = sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m$. Its exponential generating function satisfies



            begin{align*}
            sum_{n=0}^{infty} frac{a_n}{n!}x^n
            &= sum_{n=0}^{infty} left( sum_{i+j=n} frac{(-1)^j i^m}{i!j!} right) x^n \
            &= left( sum_{j=0}^{infty} frac{(-1)^j}{j!}x^j right)left( sum_{i=0}^{infty} frac{i^m}{i!}x^i right) \
            &= e^{-x} left( x frac{d}{dx} right)^m e^x.
            end{align*}



            Now consider the operator $L$ defined by $L(f) = e^{-x} x frac{d}{dx} (e^x f)$. By a direct computation, we find that $L = x(1 + frac{d}{dx})$. So



            $$ sum_{n=0}^{infty} frac{a_n}{n!}x^n = L^m(1). $$



            But the operator $L$, applied to a polynomial of degree $d$, results in a polynomial of degree $d+1$. So $L^m(1)$ is a polynomial of degree $m$, and so, $a_n = 0$ for all $n > m$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 10 '18 at 12:33

























            answered Dec 10 '18 at 12:24









            Sangchul LeeSangchul Lee

            96.2k12171281




            96.2k12171281























                2












                $begingroup$

                Let $delta$ be the forward difference operator, bringing $p(x)$ into $(delta p)(x)=p(x+1)-p(x)$. This operator
                has the property that $deg pgeq 1$ gives $degdelta p=deg p-1$, hence $m>deg p$ implies $delta^m p(x)=0$.
                If we consider $p(x)=x^{n-1}$, then



                $$ 0=delta^{n} p(x)=sum_{k=0}^{n}binom{n}{k}(-1)^k p(x+k)=(-1)^nsum_{k=0}^{n}binom{n}{k}(-1)^k p(x+n-k) $$
                hence
                $$ sum_{k=0}^{n}binom{n}{k}(-1)^k (n-k)^{n-1} = 0 $$
                and
                $$ sum_{k=1}^{n}binom{n}{k}(-1)^{k+1} (n-k)^{n-1} = n^{n-1}. $$






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  Let $delta$ be the forward difference operator, bringing $p(x)$ into $(delta p)(x)=p(x+1)-p(x)$. This operator
                  has the property that $deg pgeq 1$ gives $degdelta p=deg p-1$, hence $m>deg p$ implies $delta^m p(x)=0$.
                  If we consider $p(x)=x^{n-1}$, then



                  $$ 0=delta^{n} p(x)=sum_{k=0}^{n}binom{n}{k}(-1)^k p(x+k)=(-1)^nsum_{k=0}^{n}binom{n}{k}(-1)^k p(x+n-k) $$
                  hence
                  $$ sum_{k=0}^{n}binom{n}{k}(-1)^k (n-k)^{n-1} = 0 $$
                  and
                  $$ sum_{k=1}^{n}binom{n}{k}(-1)^{k+1} (n-k)^{n-1} = n^{n-1}. $$






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Let $delta$ be the forward difference operator, bringing $p(x)$ into $(delta p)(x)=p(x+1)-p(x)$. This operator
                    has the property that $deg pgeq 1$ gives $degdelta p=deg p-1$, hence $m>deg p$ implies $delta^m p(x)=0$.
                    If we consider $p(x)=x^{n-1}$, then



                    $$ 0=delta^{n} p(x)=sum_{k=0}^{n}binom{n}{k}(-1)^k p(x+k)=(-1)^nsum_{k=0}^{n}binom{n}{k}(-1)^k p(x+n-k) $$
                    hence
                    $$ sum_{k=0}^{n}binom{n}{k}(-1)^k (n-k)^{n-1} = 0 $$
                    and
                    $$ sum_{k=1}^{n}binom{n}{k}(-1)^{k+1} (n-k)^{n-1} = n^{n-1}. $$






                    share|cite|improve this answer









                    $endgroup$



                    Let $delta$ be the forward difference operator, bringing $p(x)$ into $(delta p)(x)=p(x+1)-p(x)$. This operator
                    has the property that $deg pgeq 1$ gives $degdelta p=deg p-1$, hence $m>deg p$ implies $delta^m p(x)=0$.
                    If we consider $p(x)=x^{n-1}$, then



                    $$ 0=delta^{n} p(x)=sum_{k=0}^{n}binom{n}{k}(-1)^k p(x+k)=(-1)^nsum_{k=0}^{n}binom{n}{k}(-1)^k p(x+n-k) $$
                    hence
                    $$ sum_{k=0}^{n}binom{n}{k}(-1)^k (n-k)^{n-1} = 0 $$
                    and
                    $$ sum_{k=1}^{n}binom{n}{k}(-1)^{k+1} (n-k)^{n-1} = n^{n-1}. $$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 10 '18 at 12:26









                    Jack D'AurizioJack D'Aurizio

                    292k33284669




                    292k33284669























                        2












                        $begingroup$

                        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                        newcommand{dd}{mathrm{d}}
                        newcommand{ds}[1]{displaystyle{#1}}
                        newcommand{expo}[1]{,mathrm{e}^{#1},}
                        newcommand{ic}{mathrm{i}}
                        newcommand{mc}[1]{mathcal{#1}}
                        newcommand{mrm}[1]{mathrm{#1}}
                        newcommand{pars}[1]{left(,{#1},right)}
                        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                        newcommand{verts}[1]{leftvert,{#1},rightvert}$




                        $ds{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                        {pars{n - j}^{n - 1} over n^{n - 1}} = 1: {LARGE ?}}$
                        .




                        $ds{Hugeleft. aright)}$
                        begin{align}
                        &bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                        {pars{n - j}^{n - 1} over n^{n - 1}}}
                        \[5mm] = &
                        -,{1 over n^{n - 1}}sum_{j = 1}^{n}{n choose j}pars{-1}^{j},
                        bracks{z^{n - 1}}bracks{pars{n - 1}!expo{pars{n - j}z}}
                        \[5mm] = &
                        -,{pars{n - 1}! over n^{n - 1}}
                        bracks{z^{n - 1}}expo{nz}sum_{j = 1}^{n}{n choose j}
                        pars{-expo{-z}}^{j}
                        \[5mm] = &
                        -,{pars{n - 1}! over n^{n - 1}}
                        bracks{z^{n - 1}}expo{nz}bracks{pars{1 - expo{-z}}^{n} - 1}
                        \[5mm] = &
                        -,{pars{n - 1}! over n^{n - 1}}
                        underbrace{bracks{z^{n - 1}}pars{expo{z} - 1}^{n}}
                        _{ds{= {{n - 1 brace n} over pars{n - 1}!} = 0}} +
                        {pars{n - 1}! over n^{n - 1}}
                        underbrace{bracks{z^{n - 1}}expo{nz}}_{ds{n^{n - 1} over pars{n - 1}!}}
                        \[5mm] = & bbx{large 1}
                        end{align}




                        $ds{m brace k}$ is the
                        Stirling Number of the Second Kind which satisfies


                        $ds{{m brace k} = 0 mbox{when} m < k}$.







                        $ds{Hugeleft. bright) {largembox{The} "easy one !!!".quad}}$ ( see details in the above answer )
                        begin{align}
                        &bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                        {pars{n - j}^{n - 1} over n^{n - 1}}} =
                        -,{pars{n - 1}! over n^{n - 1}}
                        bracks{z^{n - 1}}pars{expo{z} - 1}^{n} + 1
                        \[5mm] = &
                        -,{pars{n - 1}! over n^{n - 1}}
                        bracks{z^{-1}}pars{expo{z} - 1 over z}^{n} + 1
                        \[5mm] = &
                        -,{pars{n - 1}! over n^{n - 1}}
                        underbrace{bracks{z^{-1}}bracks{sum_{k = 0}^{infty}
                        {z^{k} over pars{k + 1}!}}^{n}}_{ds{= 0}} + 1 = bbx{large 1}
                        end{align}





                        share|cite|improve this answer











                        $endgroup$


















                          2












                          $begingroup$

                          $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                          newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                          newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                          newcommand{dd}{mathrm{d}}
                          newcommand{ds}[1]{displaystyle{#1}}
                          newcommand{expo}[1]{,mathrm{e}^{#1},}
                          newcommand{ic}{mathrm{i}}
                          newcommand{mc}[1]{mathcal{#1}}
                          newcommand{mrm}[1]{mathrm{#1}}
                          newcommand{pars}[1]{left(,{#1},right)}
                          newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                          newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                          newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                          newcommand{verts}[1]{leftvert,{#1},rightvert}$




                          $ds{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                          {pars{n - j}^{n - 1} over n^{n - 1}} = 1: {LARGE ?}}$
                          .




                          $ds{Hugeleft. aright)}$
                          begin{align}
                          &bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                          {pars{n - j}^{n - 1} over n^{n - 1}}}
                          \[5mm] = &
                          -,{1 over n^{n - 1}}sum_{j = 1}^{n}{n choose j}pars{-1}^{j},
                          bracks{z^{n - 1}}bracks{pars{n - 1}!expo{pars{n - j}z}}
                          \[5mm] = &
                          -,{pars{n - 1}! over n^{n - 1}}
                          bracks{z^{n - 1}}expo{nz}sum_{j = 1}^{n}{n choose j}
                          pars{-expo{-z}}^{j}
                          \[5mm] = &
                          -,{pars{n - 1}! over n^{n - 1}}
                          bracks{z^{n - 1}}expo{nz}bracks{pars{1 - expo{-z}}^{n} - 1}
                          \[5mm] = &
                          -,{pars{n - 1}! over n^{n - 1}}
                          underbrace{bracks{z^{n - 1}}pars{expo{z} - 1}^{n}}
                          _{ds{= {{n - 1 brace n} over pars{n - 1}!} = 0}} +
                          {pars{n - 1}! over n^{n - 1}}
                          underbrace{bracks{z^{n - 1}}expo{nz}}_{ds{n^{n - 1} over pars{n - 1}!}}
                          \[5mm] = & bbx{large 1}
                          end{align}




                          $ds{m brace k}$ is the
                          Stirling Number of the Second Kind which satisfies


                          $ds{{m brace k} = 0 mbox{when} m < k}$.







                          $ds{Hugeleft. bright) {largembox{The} "easy one !!!".quad}}$ ( see details in the above answer )
                          begin{align}
                          &bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                          {pars{n - j}^{n - 1} over n^{n - 1}}} =
                          -,{pars{n - 1}! over n^{n - 1}}
                          bracks{z^{n - 1}}pars{expo{z} - 1}^{n} + 1
                          \[5mm] = &
                          -,{pars{n - 1}! over n^{n - 1}}
                          bracks{z^{-1}}pars{expo{z} - 1 over z}^{n} + 1
                          \[5mm] = &
                          -,{pars{n - 1}! over n^{n - 1}}
                          underbrace{bracks{z^{-1}}bracks{sum_{k = 0}^{infty}
                          {z^{k} over pars{k + 1}!}}^{n}}_{ds{= 0}} + 1 = bbx{large 1}
                          end{align}





                          share|cite|improve this answer











                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                            newcommand{dd}{mathrm{d}}
                            newcommand{ds}[1]{displaystyle{#1}}
                            newcommand{expo}[1]{,mathrm{e}^{#1},}
                            newcommand{ic}{mathrm{i}}
                            newcommand{mc}[1]{mathcal{#1}}
                            newcommand{mrm}[1]{mathrm{#1}}
                            newcommand{pars}[1]{left(,{#1},right)}
                            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                            newcommand{verts}[1]{leftvert,{#1},rightvert}$




                            $ds{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                            {pars{n - j}^{n - 1} over n^{n - 1}} = 1: {LARGE ?}}$
                            .




                            $ds{Hugeleft. aright)}$
                            begin{align}
                            &bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                            {pars{n - j}^{n - 1} over n^{n - 1}}}
                            \[5mm] = &
                            -,{1 over n^{n - 1}}sum_{j = 1}^{n}{n choose j}pars{-1}^{j},
                            bracks{z^{n - 1}}bracks{pars{n - 1}!expo{pars{n - j}z}}
                            \[5mm] = &
                            -,{pars{n - 1}! over n^{n - 1}}
                            bracks{z^{n - 1}}expo{nz}sum_{j = 1}^{n}{n choose j}
                            pars{-expo{-z}}^{j}
                            \[5mm] = &
                            -,{pars{n - 1}! over n^{n - 1}}
                            bracks{z^{n - 1}}expo{nz}bracks{pars{1 - expo{-z}}^{n} - 1}
                            \[5mm] = &
                            -,{pars{n - 1}! over n^{n - 1}}
                            underbrace{bracks{z^{n - 1}}pars{expo{z} - 1}^{n}}
                            _{ds{= {{n - 1 brace n} over pars{n - 1}!} = 0}} +
                            {pars{n - 1}! over n^{n - 1}}
                            underbrace{bracks{z^{n - 1}}expo{nz}}_{ds{n^{n - 1} over pars{n - 1}!}}
                            \[5mm] = & bbx{large 1}
                            end{align}




                            $ds{m brace k}$ is the
                            Stirling Number of the Second Kind which satisfies


                            $ds{{m brace k} = 0 mbox{when} m < k}$.







                            $ds{Hugeleft. bright) {largembox{The} "easy one !!!".quad}}$ ( see details in the above answer )
                            begin{align}
                            &bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                            {pars{n - j}^{n - 1} over n^{n - 1}}} =
                            -,{pars{n - 1}! over n^{n - 1}}
                            bracks{z^{n - 1}}pars{expo{z} - 1}^{n} + 1
                            \[5mm] = &
                            -,{pars{n - 1}! over n^{n - 1}}
                            bracks{z^{-1}}pars{expo{z} - 1 over z}^{n} + 1
                            \[5mm] = &
                            -,{pars{n - 1}! over n^{n - 1}}
                            underbrace{bracks{z^{-1}}bracks{sum_{k = 0}^{infty}
                            {z^{k} over pars{k + 1}!}}^{n}}_{ds{= 0}} + 1 = bbx{large 1}
                            end{align}





                            share|cite|improve this answer











                            $endgroup$



                            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
                            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
                            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
                            newcommand{dd}{mathrm{d}}
                            newcommand{ds}[1]{displaystyle{#1}}
                            newcommand{expo}[1]{,mathrm{e}^{#1},}
                            newcommand{ic}{mathrm{i}}
                            newcommand{mc}[1]{mathcal{#1}}
                            newcommand{mrm}[1]{mathrm{#1}}
                            newcommand{pars}[1]{left(,{#1},right)}
                            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
                            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
                            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
                            newcommand{verts}[1]{leftvert,{#1},rightvert}$




                            $ds{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                            {pars{n - j}^{n - 1} over n^{n - 1}} = 1: {LARGE ?}}$
                            .




                            $ds{Hugeleft. aright)}$
                            begin{align}
                            &bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                            {pars{n - j}^{n - 1} over n^{n - 1}}}
                            \[5mm] = &
                            -,{1 over n^{n - 1}}sum_{j = 1}^{n}{n choose j}pars{-1}^{j},
                            bracks{z^{n - 1}}bracks{pars{n - 1}!expo{pars{n - j}z}}
                            \[5mm] = &
                            -,{pars{n - 1}! over n^{n - 1}}
                            bracks{z^{n - 1}}expo{nz}sum_{j = 1}^{n}{n choose j}
                            pars{-expo{-z}}^{j}
                            \[5mm] = &
                            -,{pars{n - 1}! over n^{n - 1}}
                            bracks{z^{n - 1}}expo{nz}bracks{pars{1 - expo{-z}}^{n} - 1}
                            \[5mm] = &
                            -,{pars{n - 1}! over n^{n - 1}}
                            underbrace{bracks{z^{n - 1}}pars{expo{z} - 1}^{n}}
                            _{ds{= {{n - 1 brace n} over pars{n - 1}!} = 0}} +
                            {pars{n - 1}! over n^{n - 1}}
                            underbrace{bracks{z^{n - 1}}expo{nz}}_{ds{n^{n - 1} over pars{n - 1}!}}
                            \[5mm] = & bbx{large 1}
                            end{align}




                            $ds{m brace k}$ is the
                            Stirling Number of the Second Kind which satisfies


                            $ds{{m brace k} = 0 mbox{when} m < k}$.







                            $ds{Hugeleft. bright) {largembox{The} "easy one !!!".quad}}$ ( see details in the above answer )
                            begin{align}
                            &bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
                            {pars{n - j}^{n - 1} over n^{n - 1}}} =
                            -,{pars{n - 1}! over n^{n - 1}}
                            bracks{z^{n - 1}}pars{expo{z} - 1}^{n} + 1
                            \[5mm] = &
                            -,{pars{n - 1}! over n^{n - 1}}
                            bracks{z^{-1}}pars{expo{z} - 1 over z}^{n} + 1
                            \[5mm] = &
                            -,{pars{n - 1}! over n^{n - 1}}
                            underbrace{bracks{z^{-1}}bracks{sum_{k = 0}^{infty}
                            {z^{k} over pars{k + 1}!}}^{n}}_{ds{= 0}} + 1 = bbx{large 1}
                            end{align}






                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Dec 11 '18 at 4:20

























                            answered Dec 11 '18 at 2:27









                            Felix MarinFelix Marin

                            68.8k7109146




                            68.8k7109146






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033782%2fhow-to-compute-sum-j-1n-n-choose-j-cdot-1j1-cdot-fracn%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How to change which sound is reproduced for terminal bell?

                                Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                                Can I use Tabulator js library in my java Spring + Thymeleaf project?