How to compute $sum_{j=1}^{n} {{n}choose {j}} cdot (-1)^{j+1} cdot frac{(n-j)^{n-1}}{n^{n-1}}$
$begingroup$
Hey I am wondering if the sum
$$sum_{j=1}^{n} {{n}choose {j}} cdot (-1)^{j+1} cdot frac{(n-j)^{n-1}}{n^{n-1}} = 1 $$
I got this formula from some question I tried to solve, the question is long so I will not post it here, but I am stuck with this sum, thanks for helping! I really do not know how to continue solving this sum, so how can i continue from here?
summation binomial-coefficients
$endgroup$
add a comment |
$begingroup$
Hey I am wondering if the sum
$$sum_{j=1}^{n} {{n}choose {j}} cdot (-1)^{j+1} cdot frac{(n-j)^{n-1}}{n^{n-1}} = 1 $$
I got this formula from some question I tried to solve, the question is long so I will not post it here, but I am stuck with this sum, thanks for helping! I really do not know how to continue solving this sum, so how can i continue from here?
summation binomial-coefficients
$endgroup$
2
$begingroup$
Is this even true for $n=2$? Seems false.
$endgroup$
– A. Pongrácz
Dec 10 '18 at 11:36
$begingroup$
@A.Pongrácz opps my bad, i meant one
$endgroup$
– משה לוי
Dec 10 '18 at 12:09
add a comment |
$begingroup$
Hey I am wondering if the sum
$$sum_{j=1}^{n} {{n}choose {j}} cdot (-1)^{j+1} cdot frac{(n-j)^{n-1}}{n^{n-1}} = 1 $$
I got this formula from some question I tried to solve, the question is long so I will not post it here, but I am stuck with this sum, thanks for helping! I really do not know how to continue solving this sum, so how can i continue from here?
summation binomial-coefficients
$endgroup$
Hey I am wondering if the sum
$$sum_{j=1}^{n} {{n}choose {j}} cdot (-1)^{j+1} cdot frac{(n-j)^{n-1}}{n^{n-1}} = 1 $$
I got this formula from some question I tried to solve, the question is long so I will not post it here, but I am stuck with this sum, thanks for helping! I really do not know how to continue solving this sum, so how can i continue from here?
summation binomial-coefficients
summation binomial-coefficients
edited Dec 11 '18 at 3:18
Martin Sleziak
44.9k10122276
44.9k10122276
asked Dec 10 '18 at 11:11
משה לוימשה לוי
565
565
2
$begingroup$
Is this even true for $n=2$? Seems false.
$endgroup$
– A. Pongrácz
Dec 10 '18 at 11:36
$begingroup$
@A.Pongrácz opps my bad, i meant one
$endgroup$
– משה לוי
Dec 10 '18 at 12:09
add a comment |
2
$begingroup$
Is this even true for $n=2$? Seems false.
$endgroup$
– A. Pongrácz
Dec 10 '18 at 11:36
$begingroup$
@A.Pongrácz opps my bad, i meant one
$endgroup$
– משה לוי
Dec 10 '18 at 12:09
2
2
$begingroup$
Is this even true for $n=2$? Seems false.
$endgroup$
– A. Pongrácz
Dec 10 '18 at 11:36
$begingroup$
Is this even true for $n=2$? Seems false.
$endgroup$
– A. Pongrácz
Dec 10 '18 at 11:36
$begingroup$
@A.Pongrácz opps my bad, i meant one
$endgroup$
– משה לוי
Dec 10 '18 at 12:09
$begingroup$
@A.Pongrácz opps my bad, i meant one
$endgroup$
– משה לוי
Dec 10 '18 at 12:09
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
1st proof. The identity is equivalent to
$$ sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^{n-1} = 0. $$
Let us prove a slightly general identity. Let $m in {0, cdots, n-1}$. Then
begin{align*}
sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m
&= left. left(frac{d}{dx}right)^{m}sum_{j=0}^{n} binom{n}{j}(-1)^j e^{(n-j)x} right|_{x=0} \
&= left. left(frac{d}{dx}right)^{m} (e^x - 1)^n right|_{x=0} \
&= 0,
end{align*}
where the last line follows from the fact that $(e^x - 1)^n = x^n varphi_n(x)$ for some smooth function $varphi_n$.
2nd proof. Alternatively, fix $m geq 0$ and define $a_n = sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m$. Its exponential generating function satisfies
begin{align*}
sum_{n=0}^{infty} frac{a_n}{n!}x^n
&= sum_{n=0}^{infty} left( sum_{i+j=n} frac{(-1)^j i^m}{i!j!} right) x^n \
&= left( sum_{j=0}^{infty} frac{(-1)^j}{j!}x^j right)left( sum_{i=0}^{infty} frac{i^m}{i!}x^i right) \
&= e^{-x} left( x frac{d}{dx} right)^m e^x.
end{align*}
Now consider the operator $L$ defined by $L(f) = e^{-x} x frac{d}{dx} (e^x f)$. By a direct computation, we find that $L = x(1 + frac{d}{dx})$. So
$$ sum_{n=0}^{infty} frac{a_n}{n!}x^n = L^m(1). $$
But the operator $L$, applied to a polynomial of degree $d$, results in a polynomial of degree $d+1$. So $L^m(1)$ is a polynomial of degree $m$, and so, $a_n = 0$ for all $n > m$.
$endgroup$
add a comment |
$begingroup$
Let $delta$ be the forward difference operator, bringing $p(x)$ into $(delta p)(x)=p(x+1)-p(x)$. This operator
has the property that $deg pgeq 1$ gives $degdelta p=deg p-1$, hence $m>deg p$ implies $delta^m p(x)=0$.
If we consider $p(x)=x^{n-1}$, then
$$ 0=delta^{n} p(x)=sum_{k=0}^{n}binom{n}{k}(-1)^k p(x+k)=(-1)^nsum_{k=0}^{n}binom{n}{k}(-1)^k p(x+n-k) $$
hence
$$ sum_{k=0}^{n}binom{n}{k}(-1)^k (n-k)^{n-1} = 0 $$
and
$$ sum_{k=1}^{n}binom{n}{k}(-1)^{k+1} (n-k)^{n-1} = n^{n-1}. $$
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}} = 1: {LARGE ?}}$.
$ds{Hugeleft. aright)}$
begin{align}
&bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}}}
\[5mm] = &
-,{1 over n^{n - 1}}sum_{j = 1}^{n}{n choose j}pars{-1}^{j},
bracks{z^{n - 1}}bracks{pars{n - 1}!expo{pars{n - j}z}}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}expo{nz}sum_{j = 1}^{n}{n choose j}
pars{-expo{-z}}^{j}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}expo{nz}bracks{pars{1 - expo{-z}}^{n} - 1}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{n - 1}}pars{expo{z} - 1}^{n}}
_{ds{= {{n - 1 brace n} over pars{n - 1}!} = 0}} +
{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{n - 1}}expo{nz}}_{ds{n^{n - 1} over pars{n - 1}!}}
\[5mm] = & bbx{large 1}
end{align}
$ds{m brace k}$ is the
Stirling Number of the Second Kind which satisfies
$ds{{m brace k} = 0 mbox{when} m < k}$.
$ds{Hugeleft. bright) {largembox{The} "easy one !!!".quad}}$ ( see details in the above answer )
begin{align}
&bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}}} =
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}pars{expo{z} - 1}^{n} + 1
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{-1}}pars{expo{z} - 1 over z}^{n} + 1
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{-1}}bracks{sum_{k = 0}^{infty}
{z^{k} over pars{k + 1}!}}^{n}}_{ds{= 0}} + 1 = bbx{large 1}
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033782%2fhow-to-compute-sum-j-1n-n-choose-j-cdot-1j1-cdot-fracn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
1st proof. The identity is equivalent to
$$ sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^{n-1} = 0. $$
Let us prove a slightly general identity. Let $m in {0, cdots, n-1}$. Then
begin{align*}
sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m
&= left. left(frac{d}{dx}right)^{m}sum_{j=0}^{n} binom{n}{j}(-1)^j e^{(n-j)x} right|_{x=0} \
&= left. left(frac{d}{dx}right)^{m} (e^x - 1)^n right|_{x=0} \
&= 0,
end{align*}
where the last line follows from the fact that $(e^x - 1)^n = x^n varphi_n(x)$ for some smooth function $varphi_n$.
2nd proof. Alternatively, fix $m geq 0$ and define $a_n = sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m$. Its exponential generating function satisfies
begin{align*}
sum_{n=0}^{infty} frac{a_n}{n!}x^n
&= sum_{n=0}^{infty} left( sum_{i+j=n} frac{(-1)^j i^m}{i!j!} right) x^n \
&= left( sum_{j=0}^{infty} frac{(-1)^j}{j!}x^j right)left( sum_{i=0}^{infty} frac{i^m}{i!}x^i right) \
&= e^{-x} left( x frac{d}{dx} right)^m e^x.
end{align*}
Now consider the operator $L$ defined by $L(f) = e^{-x} x frac{d}{dx} (e^x f)$. By a direct computation, we find that $L = x(1 + frac{d}{dx})$. So
$$ sum_{n=0}^{infty} frac{a_n}{n!}x^n = L^m(1). $$
But the operator $L$, applied to a polynomial of degree $d$, results in a polynomial of degree $d+1$. So $L^m(1)$ is a polynomial of degree $m$, and so, $a_n = 0$ for all $n > m$.
$endgroup$
add a comment |
$begingroup$
1st proof. The identity is equivalent to
$$ sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^{n-1} = 0. $$
Let us prove a slightly general identity. Let $m in {0, cdots, n-1}$. Then
begin{align*}
sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m
&= left. left(frac{d}{dx}right)^{m}sum_{j=0}^{n} binom{n}{j}(-1)^j e^{(n-j)x} right|_{x=0} \
&= left. left(frac{d}{dx}right)^{m} (e^x - 1)^n right|_{x=0} \
&= 0,
end{align*}
where the last line follows from the fact that $(e^x - 1)^n = x^n varphi_n(x)$ for some smooth function $varphi_n$.
2nd proof. Alternatively, fix $m geq 0$ and define $a_n = sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m$. Its exponential generating function satisfies
begin{align*}
sum_{n=0}^{infty} frac{a_n}{n!}x^n
&= sum_{n=0}^{infty} left( sum_{i+j=n} frac{(-1)^j i^m}{i!j!} right) x^n \
&= left( sum_{j=0}^{infty} frac{(-1)^j}{j!}x^j right)left( sum_{i=0}^{infty} frac{i^m}{i!}x^i right) \
&= e^{-x} left( x frac{d}{dx} right)^m e^x.
end{align*}
Now consider the operator $L$ defined by $L(f) = e^{-x} x frac{d}{dx} (e^x f)$. By a direct computation, we find that $L = x(1 + frac{d}{dx})$. So
$$ sum_{n=0}^{infty} frac{a_n}{n!}x^n = L^m(1). $$
But the operator $L$, applied to a polynomial of degree $d$, results in a polynomial of degree $d+1$. So $L^m(1)$ is a polynomial of degree $m$, and so, $a_n = 0$ for all $n > m$.
$endgroup$
add a comment |
$begingroup$
1st proof. The identity is equivalent to
$$ sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^{n-1} = 0. $$
Let us prove a slightly general identity. Let $m in {0, cdots, n-1}$. Then
begin{align*}
sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m
&= left. left(frac{d}{dx}right)^{m}sum_{j=0}^{n} binom{n}{j}(-1)^j e^{(n-j)x} right|_{x=0} \
&= left. left(frac{d}{dx}right)^{m} (e^x - 1)^n right|_{x=0} \
&= 0,
end{align*}
where the last line follows from the fact that $(e^x - 1)^n = x^n varphi_n(x)$ for some smooth function $varphi_n$.
2nd proof. Alternatively, fix $m geq 0$ and define $a_n = sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m$. Its exponential generating function satisfies
begin{align*}
sum_{n=0}^{infty} frac{a_n}{n!}x^n
&= sum_{n=0}^{infty} left( sum_{i+j=n} frac{(-1)^j i^m}{i!j!} right) x^n \
&= left( sum_{j=0}^{infty} frac{(-1)^j}{j!}x^j right)left( sum_{i=0}^{infty} frac{i^m}{i!}x^i right) \
&= e^{-x} left( x frac{d}{dx} right)^m e^x.
end{align*}
Now consider the operator $L$ defined by $L(f) = e^{-x} x frac{d}{dx} (e^x f)$. By a direct computation, we find that $L = x(1 + frac{d}{dx})$. So
$$ sum_{n=0}^{infty} frac{a_n}{n!}x^n = L^m(1). $$
But the operator $L$, applied to a polynomial of degree $d$, results in a polynomial of degree $d+1$. So $L^m(1)$ is a polynomial of degree $m$, and so, $a_n = 0$ for all $n > m$.
$endgroup$
1st proof. The identity is equivalent to
$$ sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^{n-1} = 0. $$
Let us prove a slightly general identity. Let $m in {0, cdots, n-1}$. Then
begin{align*}
sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m
&= left. left(frac{d}{dx}right)^{m}sum_{j=0}^{n} binom{n}{j}(-1)^j e^{(n-j)x} right|_{x=0} \
&= left. left(frac{d}{dx}right)^{m} (e^x - 1)^n right|_{x=0} \
&= 0,
end{align*}
where the last line follows from the fact that $(e^x - 1)^n = x^n varphi_n(x)$ for some smooth function $varphi_n$.
2nd proof. Alternatively, fix $m geq 0$ and define $a_n = sum_{j=0}^{n} binom{n}{j}(-1)^j (n-j)^m$. Its exponential generating function satisfies
begin{align*}
sum_{n=0}^{infty} frac{a_n}{n!}x^n
&= sum_{n=0}^{infty} left( sum_{i+j=n} frac{(-1)^j i^m}{i!j!} right) x^n \
&= left( sum_{j=0}^{infty} frac{(-1)^j}{j!}x^j right)left( sum_{i=0}^{infty} frac{i^m}{i!}x^i right) \
&= e^{-x} left( x frac{d}{dx} right)^m e^x.
end{align*}
Now consider the operator $L$ defined by $L(f) = e^{-x} x frac{d}{dx} (e^x f)$. By a direct computation, we find that $L = x(1 + frac{d}{dx})$. So
$$ sum_{n=0}^{infty} frac{a_n}{n!}x^n = L^m(1). $$
But the operator $L$, applied to a polynomial of degree $d$, results in a polynomial of degree $d+1$. So $L^m(1)$ is a polynomial of degree $m$, and so, $a_n = 0$ for all $n > m$.
edited Dec 10 '18 at 12:33
answered Dec 10 '18 at 12:24
Sangchul LeeSangchul Lee
96.2k12171281
96.2k12171281
add a comment |
add a comment |
$begingroup$
Let $delta$ be the forward difference operator, bringing $p(x)$ into $(delta p)(x)=p(x+1)-p(x)$. This operator
has the property that $deg pgeq 1$ gives $degdelta p=deg p-1$, hence $m>deg p$ implies $delta^m p(x)=0$.
If we consider $p(x)=x^{n-1}$, then
$$ 0=delta^{n} p(x)=sum_{k=0}^{n}binom{n}{k}(-1)^k p(x+k)=(-1)^nsum_{k=0}^{n}binom{n}{k}(-1)^k p(x+n-k) $$
hence
$$ sum_{k=0}^{n}binom{n}{k}(-1)^k (n-k)^{n-1} = 0 $$
and
$$ sum_{k=1}^{n}binom{n}{k}(-1)^{k+1} (n-k)^{n-1} = n^{n-1}. $$
$endgroup$
add a comment |
$begingroup$
Let $delta$ be the forward difference operator, bringing $p(x)$ into $(delta p)(x)=p(x+1)-p(x)$. This operator
has the property that $deg pgeq 1$ gives $degdelta p=deg p-1$, hence $m>deg p$ implies $delta^m p(x)=0$.
If we consider $p(x)=x^{n-1}$, then
$$ 0=delta^{n} p(x)=sum_{k=0}^{n}binom{n}{k}(-1)^k p(x+k)=(-1)^nsum_{k=0}^{n}binom{n}{k}(-1)^k p(x+n-k) $$
hence
$$ sum_{k=0}^{n}binom{n}{k}(-1)^k (n-k)^{n-1} = 0 $$
and
$$ sum_{k=1}^{n}binom{n}{k}(-1)^{k+1} (n-k)^{n-1} = n^{n-1}. $$
$endgroup$
add a comment |
$begingroup$
Let $delta$ be the forward difference operator, bringing $p(x)$ into $(delta p)(x)=p(x+1)-p(x)$. This operator
has the property that $deg pgeq 1$ gives $degdelta p=deg p-1$, hence $m>deg p$ implies $delta^m p(x)=0$.
If we consider $p(x)=x^{n-1}$, then
$$ 0=delta^{n} p(x)=sum_{k=0}^{n}binom{n}{k}(-1)^k p(x+k)=(-1)^nsum_{k=0}^{n}binom{n}{k}(-1)^k p(x+n-k) $$
hence
$$ sum_{k=0}^{n}binom{n}{k}(-1)^k (n-k)^{n-1} = 0 $$
and
$$ sum_{k=1}^{n}binom{n}{k}(-1)^{k+1} (n-k)^{n-1} = n^{n-1}. $$
$endgroup$
Let $delta$ be the forward difference operator, bringing $p(x)$ into $(delta p)(x)=p(x+1)-p(x)$. This operator
has the property that $deg pgeq 1$ gives $degdelta p=deg p-1$, hence $m>deg p$ implies $delta^m p(x)=0$.
If we consider $p(x)=x^{n-1}$, then
$$ 0=delta^{n} p(x)=sum_{k=0}^{n}binom{n}{k}(-1)^k p(x+k)=(-1)^nsum_{k=0}^{n}binom{n}{k}(-1)^k p(x+n-k) $$
hence
$$ sum_{k=0}^{n}binom{n}{k}(-1)^k (n-k)^{n-1} = 0 $$
and
$$ sum_{k=1}^{n}binom{n}{k}(-1)^{k+1} (n-k)^{n-1} = n^{n-1}. $$
answered Dec 10 '18 at 12:26
Jack D'AurizioJack D'Aurizio
292k33284669
292k33284669
add a comment |
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}} = 1: {LARGE ?}}$.
$ds{Hugeleft. aright)}$
begin{align}
&bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}}}
\[5mm] = &
-,{1 over n^{n - 1}}sum_{j = 1}^{n}{n choose j}pars{-1}^{j},
bracks{z^{n - 1}}bracks{pars{n - 1}!expo{pars{n - j}z}}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}expo{nz}sum_{j = 1}^{n}{n choose j}
pars{-expo{-z}}^{j}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}expo{nz}bracks{pars{1 - expo{-z}}^{n} - 1}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{n - 1}}pars{expo{z} - 1}^{n}}
_{ds{= {{n - 1 brace n} over pars{n - 1}!} = 0}} +
{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{n - 1}}expo{nz}}_{ds{n^{n - 1} over pars{n - 1}!}}
\[5mm] = & bbx{large 1}
end{align}
$ds{m brace k}$ is the
Stirling Number of the Second Kind which satisfies
$ds{{m brace k} = 0 mbox{when} m < k}$.
$ds{Hugeleft. bright) {largembox{The} "easy one !!!".quad}}$ ( see details in the above answer )
begin{align}
&bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}}} =
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}pars{expo{z} - 1}^{n} + 1
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{-1}}pars{expo{z} - 1 over z}^{n} + 1
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{-1}}bracks{sum_{k = 0}^{infty}
{z^{k} over pars{k + 1}!}}^{n}}_{ds{= 0}} + 1 = bbx{large 1}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}} = 1: {LARGE ?}}$.
$ds{Hugeleft. aright)}$
begin{align}
&bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}}}
\[5mm] = &
-,{1 over n^{n - 1}}sum_{j = 1}^{n}{n choose j}pars{-1}^{j},
bracks{z^{n - 1}}bracks{pars{n - 1}!expo{pars{n - j}z}}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}expo{nz}sum_{j = 1}^{n}{n choose j}
pars{-expo{-z}}^{j}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}expo{nz}bracks{pars{1 - expo{-z}}^{n} - 1}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{n - 1}}pars{expo{z} - 1}^{n}}
_{ds{= {{n - 1 brace n} over pars{n - 1}!} = 0}} +
{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{n - 1}}expo{nz}}_{ds{n^{n - 1} over pars{n - 1}!}}
\[5mm] = & bbx{large 1}
end{align}
$ds{m brace k}$ is the
Stirling Number of the Second Kind which satisfies
$ds{{m brace k} = 0 mbox{when} m < k}$.
$ds{Hugeleft. bright) {largembox{The} "easy one !!!".quad}}$ ( see details in the above answer )
begin{align}
&bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}}} =
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}pars{expo{z} - 1}^{n} + 1
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{-1}}pars{expo{z} - 1 over z}^{n} + 1
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{-1}}bracks{sum_{k = 0}^{infty}
{z^{k} over pars{k + 1}!}}^{n}}_{ds{= 0}} + 1 = bbx{large 1}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}} = 1: {LARGE ?}}$.
$ds{Hugeleft. aright)}$
begin{align}
&bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}}}
\[5mm] = &
-,{1 over n^{n - 1}}sum_{j = 1}^{n}{n choose j}pars{-1}^{j},
bracks{z^{n - 1}}bracks{pars{n - 1}!expo{pars{n - j}z}}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}expo{nz}sum_{j = 1}^{n}{n choose j}
pars{-expo{-z}}^{j}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}expo{nz}bracks{pars{1 - expo{-z}}^{n} - 1}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{n - 1}}pars{expo{z} - 1}^{n}}
_{ds{= {{n - 1 brace n} over pars{n - 1}!} = 0}} +
{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{n - 1}}expo{nz}}_{ds{n^{n - 1} over pars{n - 1}!}}
\[5mm] = & bbx{large 1}
end{align}
$ds{m brace k}$ is the
Stirling Number of the Second Kind which satisfies
$ds{{m brace k} = 0 mbox{when} m < k}$.
$ds{Hugeleft. bright) {largembox{The} "easy one !!!".quad}}$ ( see details in the above answer )
begin{align}
&bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}}} =
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}pars{expo{z} - 1}^{n} + 1
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{-1}}pars{expo{z} - 1 over z}^{n} + 1
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{-1}}bracks{sum_{k = 0}^{infty}
{z^{k} over pars{k + 1}!}}^{n}}_{ds{= 0}} + 1 = bbx{large 1}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}} = 1: {LARGE ?}}$.
$ds{Hugeleft. aright)}$
begin{align}
&bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}}}
\[5mm] = &
-,{1 over n^{n - 1}}sum_{j = 1}^{n}{n choose j}pars{-1}^{j},
bracks{z^{n - 1}}bracks{pars{n - 1}!expo{pars{n - j}z}}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}expo{nz}sum_{j = 1}^{n}{n choose j}
pars{-expo{-z}}^{j}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}expo{nz}bracks{pars{1 - expo{-z}}^{n} - 1}
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{n - 1}}pars{expo{z} - 1}^{n}}
_{ds{= {{n - 1 brace n} over pars{n - 1}!} = 0}} +
{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{n - 1}}expo{nz}}_{ds{n^{n - 1} over pars{n - 1}!}}
\[5mm] = & bbx{large 1}
end{align}
$ds{m brace k}$ is the
Stirling Number of the Second Kind which satisfies
$ds{{m brace k} = 0 mbox{when} m < k}$.
$ds{Hugeleft. bright) {largembox{The} "easy one !!!".quad}}$ ( see details in the above answer )
begin{align}
&bbox[10px,#ffd]{sum_{j = 1}^{n}{n choose j}pars{-1}^{j + 1},
{pars{n - j}^{n - 1} over n^{n - 1}}} =
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{n - 1}}pars{expo{z} - 1}^{n} + 1
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
bracks{z^{-1}}pars{expo{z} - 1 over z}^{n} + 1
\[5mm] = &
-,{pars{n - 1}! over n^{n - 1}}
underbrace{bracks{z^{-1}}bracks{sum_{k = 0}^{infty}
{z^{k} over pars{k + 1}!}}^{n}}_{ds{= 0}} + 1 = bbx{large 1}
end{align}
edited Dec 11 '18 at 4:20
answered Dec 11 '18 at 2:27
Felix MarinFelix Marin
68.8k7109146
68.8k7109146
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033782%2fhow-to-compute-sum-j-1n-n-choose-j-cdot-1j1-cdot-fracn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Is this even true for $n=2$? Seems false.
$endgroup$
– A. Pongrácz
Dec 10 '18 at 11:36
$begingroup$
@A.Pongrácz opps my bad, i meant one
$endgroup$
– משה לוי
Dec 10 '18 at 12:09