Minimazation problem with norm and matrix
$begingroup$
In the context of principal component analysis, I got to the minimazation problem:
$$min_{A, (v_{i})} sum_{i=0}^n leftlVert X_{i}-Av_{i}rightrVert^2$$
for $X_1,...,X_nin mathbb{R}^p$
For the mean $bar{X}=0$ it has the solutions:
$$hat{v_{i}}=hat{A^T}X_{i}$$ $$hat{A}=(w_1,...,w_q)$$
where $W=(w_1,...,w_p)in mathbb{R^{ptimes p}}$, and $W*X*W^T$ the eigenvaluedecomposition.
Its a long time I didnt do calculus and optimazation. I tried to compute the derivative and got (with f being the function we want to minimize):
$$frac{partial{f}}{partial{A}}= sum_{i=0}^n 2*leftlVert X_{i}-Av_{i}rightrVert * v_k^T$$
and
$$frac{partial{f}}{partial{v_k}} = 2*leftlVert X_{k}-Av_{k}rightrVert * A$$
Setting this zero, I really have no clue how to get to the seolution.
optimization norm matrix-calculus
$endgroup$
add a comment |
$begingroup$
In the context of principal component analysis, I got to the minimazation problem:
$$min_{A, (v_{i})} sum_{i=0}^n leftlVert X_{i}-Av_{i}rightrVert^2$$
for $X_1,...,X_nin mathbb{R}^p$
For the mean $bar{X}=0$ it has the solutions:
$$hat{v_{i}}=hat{A^T}X_{i}$$ $$hat{A}=(w_1,...,w_q)$$
where $W=(w_1,...,w_p)in mathbb{R^{ptimes p}}$, and $W*X*W^T$ the eigenvaluedecomposition.
Its a long time I didnt do calculus and optimazation. I tried to compute the derivative and got (with f being the function we want to minimize):
$$frac{partial{f}}{partial{A}}= sum_{i=0}^n 2*leftlVert X_{i}-Av_{i}rightrVert * v_k^T$$
and
$$frac{partial{f}}{partial{v_k}} = 2*leftlVert X_{k}-Av_{k}rightrVert * A$$
Setting this zero, I really have no clue how to get to the seolution.
optimization norm matrix-calculus
$endgroup$
$begingroup$
see here: stats.stackexchange.com/a/10260/55946
$endgroup$
– dimebucker
Dec 10 '18 at 11:22
$begingroup$
@dimebucker Thanks, that helps!
$endgroup$
– Losyres
Dec 11 '18 at 14:54
add a comment |
$begingroup$
In the context of principal component analysis, I got to the minimazation problem:
$$min_{A, (v_{i})} sum_{i=0}^n leftlVert X_{i}-Av_{i}rightrVert^2$$
for $X_1,...,X_nin mathbb{R}^p$
For the mean $bar{X}=0$ it has the solutions:
$$hat{v_{i}}=hat{A^T}X_{i}$$ $$hat{A}=(w_1,...,w_q)$$
where $W=(w_1,...,w_p)in mathbb{R^{ptimes p}}$, and $W*X*W^T$ the eigenvaluedecomposition.
Its a long time I didnt do calculus and optimazation. I tried to compute the derivative and got (with f being the function we want to minimize):
$$frac{partial{f}}{partial{A}}= sum_{i=0}^n 2*leftlVert X_{i}-Av_{i}rightrVert * v_k^T$$
and
$$frac{partial{f}}{partial{v_k}} = 2*leftlVert X_{k}-Av_{k}rightrVert * A$$
Setting this zero, I really have no clue how to get to the seolution.
optimization norm matrix-calculus
$endgroup$
In the context of principal component analysis, I got to the minimazation problem:
$$min_{A, (v_{i})} sum_{i=0}^n leftlVert X_{i}-Av_{i}rightrVert^2$$
for $X_1,...,X_nin mathbb{R}^p$
For the mean $bar{X}=0$ it has the solutions:
$$hat{v_{i}}=hat{A^T}X_{i}$$ $$hat{A}=(w_1,...,w_q)$$
where $W=(w_1,...,w_p)in mathbb{R^{ptimes p}}$, and $W*X*W^T$ the eigenvaluedecomposition.
Its a long time I didnt do calculus and optimazation. I tried to compute the derivative and got (with f being the function we want to minimize):
$$frac{partial{f}}{partial{A}}= sum_{i=0}^n 2*leftlVert X_{i}-Av_{i}rightrVert * v_k^T$$
and
$$frac{partial{f}}{partial{v_k}} = 2*leftlVert X_{k}-Av_{k}rightrVert * A$$
Setting this zero, I really have no clue how to get to the seolution.
optimization norm matrix-calculus
optimization norm matrix-calculus
asked Dec 10 '18 at 11:13
LosyresLosyres
354
354
$begingroup$
see here: stats.stackexchange.com/a/10260/55946
$endgroup$
– dimebucker
Dec 10 '18 at 11:22
$begingroup$
@dimebucker Thanks, that helps!
$endgroup$
– Losyres
Dec 11 '18 at 14:54
add a comment |
$begingroup$
see here: stats.stackexchange.com/a/10260/55946
$endgroup$
– dimebucker
Dec 10 '18 at 11:22
$begingroup$
@dimebucker Thanks, that helps!
$endgroup$
– Losyres
Dec 11 '18 at 14:54
$begingroup$
see here: stats.stackexchange.com/a/10260/55946
$endgroup$
– dimebucker
Dec 10 '18 at 11:22
$begingroup$
see here: stats.stackexchange.com/a/10260/55946
$endgroup$
– dimebucker
Dec 10 '18 at 11:22
$begingroup$
@dimebucker Thanks, that helps!
$endgroup$
– Losyres
Dec 11 '18 at 14:54
$begingroup$
@dimebucker Thanks, that helps!
$endgroup$
– Losyres
Dec 11 '18 at 14:54
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033785%2fminimazation-problem-with-norm-and-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033785%2fminimazation-problem-with-norm-and-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
see here: stats.stackexchange.com/a/10260/55946
$endgroup$
– dimebucker
Dec 10 '18 at 11:22
$begingroup$
@dimebucker Thanks, that helps!
$endgroup$
– Losyres
Dec 11 '18 at 14:54