Prove that $x(t)$ is bounded
$begingroup$
In this problem, I tried the following:
First I show that
$$x(t) = e^{tA}x_0 + intlimits_0^t e^{(t-s)A}f(s)ds$$
Then I take the norm for both sides
$$|x(t)|leq Ke^{-alpha t}|x_0|+left|intlimits_0^t e^{(t-s)A}f(s)dsright|$$
I have used Meiss’s Lemma ($|e^{tA}|leq K e^{-alpha t}|$ for some $K>0$, $alpha >0$).
Could you please help me in what is remaining, and if there is any mistake. Thanks.
ordinary-differential-equations eigenvalues-eigenvectors
$endgroup$
|
show 1 more comment
$begingroup$
In this problem, I tried the following:
First I show that
$$x(t) = e^{tA}x_0 + intlimits_0^t e^{(t-s)A}f(s)ds$$
Then I take the norm for both sides
$$|x(t)|leq Ke^{-alpha t}|x_0|+left|intlimits_0^t e^{(t-s)A}f(s)dsright|$$
I have used Meiss’s Lemma ($|e^{tA}|leq K e^{-alpha t}|$ for some $K>0$, $alpha >0$).
Could you please help me in what is remaining, and if there is any mistake. Thanks.
ordinary-differential-equations eigenvalues-eigenvectors
$endgroup$
2
$begingroup$
You just bring the norm inside the integral and you conclude
$endgroup$
– Federico
Dec 7 '18 at 16:13
1
$begingroup$
And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
$endgroup$
– mathcounterexamples.net
Dec 7 '18 at 16:23
$begingroup$
It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
$endgroup$
– Eduardo Elael
Dec 7 '18 at 16:30
$begingroup$
Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
$endgroup$
– Ahmed
Dec 8 '18 at 20:05
$begingroup$
Could you please check my comment @Federico
$endgroup$
– Ahmed
Dec 8 '18 at 20:23
|
show 1 more comment
$begingroup$
In this problem, I tried the following:
First I show that
$$x(t) = e^{tA}x_0 + intlimits_0^t e^{(t-s)A}f(s)ds$$
Then I take the norm for both sides
$$|x(t)|leq Ke^{-alpha t}|x_0|+left|intlimits_0^t e^{(t-s)A}f(s)dsright|$$
I have used Meiss’s Lemma ($|e^{tA}|leq K e^{-alpha t}|$ for some $K>0$, $alpha >0$).
Could you please help me in what is remaining, and if there is any mistake. Thanks.
ordinary-differential-equations eigenvalues-eigenvectors
$endgroup$
In this problem, I tried the following:
First I show that
$$x(t) = e^{tA}x_0 + intlimits_0^t e^{(t-s)A}f(s)ds$$
Then I take the norm for both sides
$$|x(t)|leq Ke^{-alpha t}|x_0|+left|intlimits_0^t e^{(t-s)A}f(s)dsright|$$
I have used Meiss’s Lemma ($|e^{tA}|leq K e^{-alpha t}|$ for some $K>0$, $alpha >0$).
Could you please help me in what is remaining, and if there is any mistake. Thanks.
ordinary-differential-equations eigenvalues-eigenvectors
ordinary-differential-equations eigenvalues-eigenvectors
asked Dec 7 '18 at 16:10
AhmedAhmed
1,247612
1,247612
2
$begingroup$
You just bring the norm inside the integral and you conclude
$endgroup$
– Federico
Dec 7 '18 at 16:13
1
$begingroup$
And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
$endgroup$
– mathcounterexamples.net
Dec 7 '18 at 16:23
$begingroup$
It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
$endgroup$
– Eduardo Elael
Dec 7 '18 at 16:30
$begingroup$
Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
$endgroup$
– Ahmed
Dec 8 '18 at 20:05
$begingroup$
Could you please check my comment @Federico
$endgroup$
– Ahmed
Dec 8 '18 at 20:23
|
show 1 more comment
2
$begingroup$
You just bring the norm inside the integral and you conclude
$endgroup$
– Federico
Dec 7 '18 at 16:13
1
$begingroup$
And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
$endgroup$
– mathcounterexamples.net
Dec 7 '18 at 16:23
$begingroup$
It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
$endgroup$
– Eduardo Elael
Dec 7 '18 at 16:30
$begingroup$
Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
$endgroup$
– Ahmed
Dec 8 '18 at 20:05
$begingroup$
Could you please check my comment @Federico
$endgroup$
– Ahmed
Dec 8 '18 at 20:23
2
2
$begingroup$
You just bring the norm inside the integral and you conclude
$endgroup$
– Federico
Dec 7 '18 at 16:13
$begingroup$
You just bring the norm inside the integral and you conclude
$endgroup$
– Federico
Dec 7 '18 at 16:13
1
1
$begingroup$
And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
$endgroup$
– mathcounterexamples.net
Dec 7 '18 at 16:23
$begingroup$
And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
$endgroup$
– mathcounterexamples.net
Dec 7 '18 at 16:23
$begingroup$
It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
$endgroup$
– Eduardo Elael
Dec 7 '18 at 16:30
$begingroup$
It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
$endgroup$
– Eduardo Elael
Dec 7 '18 at 16:30
$begingroup$
Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
$endgroup$
– Ahmed
Dec 8 '18 at 20:05
$begingroup$
Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
$endgroup$
– Ahmed
Dec 8 '18 at 20:05
$begingroup$
Could you please check my comment @Federico
$endgroup$
– Ahmed
Dec 8 '18 at 20:23
$begingroup$
Could you please check my comment @Federico
$endgroup$
– Ahmed
Dec 8 '18 at 20:23
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
Following the already given hints,
$$
begin{split}
|x(t)|
&leq Ke^{-alpha t} |x_0| + left|int_0^t e^{(t-s)A}f(s),dsright| \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}f(s)bigr|,ds \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}bigr||f(s)|,ds \
&leq Ke^{-alpha t} |x_0| + K|f|_infty int_0^t e^{alpha(s-t)},ds \
&= Ke^{-alpha t} |x_0| + K|f|_infty frac{1-e^{-alpha t}}{alpha} \
&leq Ke^{-alpha t} |x_0| + frac{K|f|_infty}alpha .
end{split}
$$
$endgroup$
$begingroup$
Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
$endgroup$
– Ahmed
Dec 11 '18 at 13:49
$begingroup$
What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
$endgroup$
– Federico
Dec 11 '18 at 14:00
1
$begingroup$
Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
$endgroup$
– Federico
Dec 11 '18 at 14:01
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030068%2fprove-that-xt-is-bounded%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Following the already given hints,
$$
begin{split}
|x(t)|
&leq Ke^{-alpha t} |x_0| + left|int_0^t e^{(t-s)A}f(s),dsright| \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}f(s)bigr|,ds \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}bigr||f(s)|,ds \
&leq Ke^{-alpha t} |x_0| + K|f|_infty int_0^t e^{alpha(s-t)},ds \
&= Ke^{-alpha t} |x_0| + K|f|_infty frac{1-e^{-alpha t}}{alpha} \
&leq Ke^{-alpha t} |x_0| + frac{K|f|_infty}alpha .
end{split}
$$
$endgroup$
$begingroup$
Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
$endgroup$
– Ahmed
Dec 11 '18 at 13:49
$begingroup$
What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
$endgroup$
– Federico
Dec 11 '18 at 14:00
1
$begingroup$
Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
$endgroup$
– Federico
Dec 11 '18 at 14:01
add a comment |
$begingroup$
Following the already given hints,
$$
begin{split}
|x(t)|
&leq Ke^{-alpha t} |x_0| + left|int_0^t e^{(t-s)A}f(s),dsright| \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}f(s)bigr|,ds \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}bigr||f(s)|,ds \
&leq Ke^{-alpha t} |x_0| + K|f|_infty int_0^t e^{alpha(s-t)},ds \
&= Ke^{-alpha t} |x_0| + K|f|_infty frac{1-e^{-alpha t}}{alpha} \
&leq Ke^{-alpha t} |x_0| + frac{K|f|_infty}alpha .
end{split}
$$
$endgroup$
$begingroup$
Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
$endgroup$
– Ahmed
Dec 11 '18 at 13:49
$begingroup$
What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
$endgroup$
– Federico
Dec 11 '18 at 14:00
1
$begingroup$
Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
$endgroup$
– Federico
Dec 11 '18 at 14:01
add a comment |
$begingroup$
Following the already given hints,
$$
begin{split}
|x(t)|
&leq Ke^{-alpha t} |x_0| + left|int_0^t e^{(t-s)A}f(s),dsright| \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}f(s)bigr|,ds \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}bigr||f(s)|,ds \
&leq Ke^{-alpha t} |x_0| + K|f|_infty int_0^t e^{alpha(s-t)},ds \
&= Ke^{-alpha t} |x_0| + K|f|_infty frac{1-e^{-alpha t}}{alpha} \
&leq Ke^{-alpha t} |x_0| + frac{K|f|_infty}alpha .
end{split}
$$
$endgroup$
Following the already given hints,
$$
begin{split}
|x(t)|
&leq Ke^{-alpha t} |x_0| + left|int_0^t e^{(t-s)A}f(s),dsright| \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}f(s)bigr|,ds \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}bigr||f(s)|,ds \
&leq Ke^{-alpha t} |x_0| + K|f|_infty int_0^t e^{alpha(s-t)},ds \
&= Ke^{-alpha t} |x_0| + K|f|_infty frac{1-e^{-alpha t}}{alpha} \
&leq Ke^{-alpha t} |x_0| + frac{K|f|_infty}alpha .
end{split}
$$
answered Dec 10 '18 at 14:05
FedericoFederico
5,144514
5,144514
$begingroup$
Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
$endgroup$
– Ahmed
Dec 11 '18 at 13:49
$begingroup$
What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
$endgroup$
– Federico
Dec 11 '18 at 14:00
1
$begingroup$
Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
$endgroup$
– Federico
Dec 11 '18 at 14:01
add a comment |
$begingroup$
Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
$endgroup$
– Ahmed
Dec 11 '18 at 13:49
$begingroup$
What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
$endgroup$
– Federico
Dec 11 '18 at 14:00
1
$begingroup$
Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
$endgroup$
– Federico
Dec 11 '18 at 14:01
$begingroup$
Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
$endgroup$
– Ahmed
Dec 11 '18 at 13:49
$begingroup$
Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
$endgroup$
– Ahmed
Dec 11 '18 at 13:49
$begingroup$
What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
$endgroup$
– Federico
Dec 11 '18 at 14:00
$begingroup$
What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
$endgroup$
– Federico
Dec 11 '18 at 14:00
1
1
$begingroup$
Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
$endgroup$
– Federico
Dec 11 '18 at 14:01
$begingroup$
Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
$endgroup$
– Federico
Dec 11 '18 at 14:01
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030068%2fprove-that-xt-is-bounded%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
You just bring the norm inside the integral and you conclude
$endgroup$
– Federico
Dec 7 '18 at 16:13
1
$begingroup$
And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
$endgroup$
– mathcounterexamples.net
Dec 7 '18 at 16:23
$begingroup$
It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
$endgroup$
– Eduardo Elael
Dec 7 '18 at 16:30
$begingroup$
Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
$endgroup$
– Ahmed
Dec 8 '18 at 20:05
$begingroup$
Could you please check my comment @Federico
$endgroup$
– Ahmed
Dec 8 '18 at 20:23