Derivative Simplification
$begingroup$
Need help proving the following:
$frac{dp}{d ln(t)} = t frac {dp}{dt} $
This is what I have so far:
Applying chain rule.
$frac{dp}{d ln(t)} = frac {dp}{dt}frac {dt}{d ln(t)} $
Simplifying:
$frac {dp}{dt}frac {dt}{d ln(t)} = frac {dp}{dt}frac {1}{frac{d}{dt}} ln(t)$
Need assistance with the rest.
Thanks!
calculus
$endgroup$
add a comment |
$begingroup$
Need help proving the following:
$frac{dp}{d ln(t)} = t frac {dp}{dt} $
This is what I have so far:
Applying chain rule.
$frac{dp}{d ln(t)} = frac {dp}{dt}frac {dt}{d ln(t)} $
Simplifying:
$frac {dp}{dt}frac {dt}{d ln(t)} = frac {dp}{dt}frac {1}{frac{d}{dt}} ln(t)$
Need assistance with the rest.
Thanks!
calculus
$endgroup$
$begingroup$
$frac {dt}{d ln(t)}=frac 1{frac {d ln(t)}{dt}}$ could help
$endgroup$
– Claude Leibovici
Dec 10 '18 at 8:35
add a comment |
$begingroup$
Need help proving the following:
$frac{dp}{d ln(t)} = t frac {dp}{dt} $
This is what I have so far:
Applying chain rule.
$frac{dp}{d ln(t)} = frac {dp}{dt}frac {dt}{d ln(t)} $
Simplifying:
$frac {dp}{dt}frac {dt}{d ln(t)} = frac {dp}{dt}frac {1}{frac{d}{dt}} ln(t)$
Need assistance with the rest.
Thanks!
calculus
$endgroup$
Need help proving the following:
$frac{dp}{d ln(t)} = t frac {dp}{dt} $
This is what I have so far:
Applying chain rule.
$frac{dp}{d ln(t)} = frac {dp}{dt}frac {dt}{d ln(t)} $
Simplifying:
$frac {dp}{dt}frac {dt}{d ln(t)} = frac {dp}{dt}frac {1}{frac{d}{dt}} ln(t)$
Need assistance with the rest.
Thanks!
calculus
calculus
asked Dec 10 '18 at 6:21
MrCleanMrClean
84
84
$begingroup$
$frac {dt}{d ln(t)}=frac 1{frac {d ln(t)}{dt}}$ could help
$endgroup$
– Claude Leibovici
Dec 10 '18 at 8:35
add a comment |
$begingroup$
$frac {dt}{d ln(t)}=frac 1{frac {d ln(t)}{dt}}$ could help
$endgroup$
– Claude Leibovici
Dec 10 '18 at 8:35
$begingroup$
$frac {dt}{d ln(t)}=frac 1{frac {d ln(t)}{dt}}$ could help
$endgroup$
– Claude Leibovici
Dec 10 '18 at 8:35
$begingroup$
$frac {dt}{d ln(t)}=frac 1{frac {d ln(t)}{dt}}$ could help
$endgroup$
– Claude Leibovici
Dec 10 '18 at 8:35
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Leibniz's notations can sometimes be confusing. Writing something like $frac{1}{frac{mathrm{d}}{mathrm{d}t}}$ is terrible.
Let $p(t) = q(ln(t))$. Then
$$frac{mathrm{d}p(t)}{mathrm{d}ln(t)} = frac{mathrm{d} q(ln(t))}{mathrm{d} ln(t)} = q'(ln(t)).$$ Here we treat $ln(t)$ as a single variable.
Also,
$$frac{mathrm{d}p(t)}{mathrm{d}t} = frac{mathrm{d}q(ln(t))}{mathrm{d}t}= q'(ln(t))(ln(t))'=q'(ln(t))frac{1}{t}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033534%2fderivative-simplification%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Leibniz's notations can sometimes be confusing. Writing something like $frac{1}{frac{mathrm{d}}{mathrm{d}t}}$ is terrible.
Let $p(t) = q(ln(t))$. Then
$$frac{mathrm{d}p(t)}{mathrm{d}ln(t)} = frac{mathrm{d} q(ln(t))}{mathrm{d} ln(t)} = q'(ln(t)).$$ Here we treat $ln(t)$ as a single variable.
Also,
$$frac{mathrm{d}p(t)}{mathrm{d}t} = frac{mathrm{d}q(ln(t))}{mathrm{d}t}= q'(ln(t))(ln(t))'=q'(ln(t))frac{1}{t}.$$
$endgroup$
add a comment |
$begingroup$
Leibniz's notations can sometimes be confusing. Writing something like $frac{1}{frac{mathrm{d}}{mathrm{d}t}}$ is terrible.
Let $p(t) = q(ln(t))$. Then
$$frac{mathrm{d}p(t)}{mathrm{d}ln(t)} = frac{mathrm{d} q(ln(t))}{mathrm{d} ln(t)} = q'(ln(t)).$$ Here we treat $ln(t)$ as a single variable.
Also,
$$frac{mathrm{d}p(t)}{mathrm{d}t} = frac{mathrm{d}q(ln(t))}{mathrm{d}t}= q'(ln(t))(ln(t))'=q'(ln(t))frac{1}{t}.$$
$endgroup$
add a comment |
$begingroup$
Leibniz's notations can sometimes be confusing. Writing something like $frac{1}{frac{mathrm{d}}{mathrm{d}t}}$ is terrible.
Let $p(t) = q(ln(t))$. Then
$$frac{mathrm{d}p(t)}{mathrm{d}ln(t)} = frac{mathrm{d} q(ln(t))}{mathrm{d} ln(t)} = q'(ln(t)).$$ Here we treat $ln(t)$ as a single variable.
Also,
$$frac{mathrm{d}p(t)}{mathrm{d}t} = frac{mathrm{d}q(ln(t))}{mathrm{d}t}= q'(ln(t))(ln(t))'=q'(ln(t))frac{1}{t}.$$
$endgroup$
Leibniz's notations can sometimes be confusing. Writing something like $frac{1}{frac{mathrm{d}}{mathrm{d}t}}$ is terrible.
Let $p(t) = q(ln(t))$. Then
$$frac{mathrm{d}p(t)}{mathrm{d}ln(t)} = frac{mathrm{d} q(ln(t))}{mathrm{d} ln(t)} = q'(ln(t)).$$ Here we treat $ln(t)$ as a single variable.
Also,
$$frac{mathrm{d}p(t)}{mathrm{d}t} = frac{mathrm{d}q(ln(t))}{mathrm{d}t}= q'(ln(t))(ln(t))'=q'(ln(t))frac{1}{t}.$$
answered Dec 10 '18 at 6:35
tonychow0929tonychow0929
28825
28825
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033534%2fderivative-simplification%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$frac {dt}{d ln(t)}=frac 1{frac {d ln(t)}{dt}}$ could help
$endgroup$
– Claude Leibovici
Dec 10 '18 at 8:35