Proof that $5$ is a quadratic residue $(mod p)$ with $p$ odd prime iif $p equiv pm 1 mod 10$
$begingroup$
Here I present the following proof in order to receive corrections or any kind of suggestion to improve my handling/knowledge of modular arithmetic:
Prove that $5$ is a quadratic residue $(mod p)$ with $p$ odd prime
iif $p equiv pm 1 mod 10$ ; prove also that $5$ is NOT a quadratic residue $(mod p)$
iif $p equiv pm 3 mod 10$.
Dim:
To check if $5$ is a quadratic residue $(mod p)$ I write the equivalent Legendre symbol with the condition:
$(5/p) = 1$
So I have for quadratic reciprocity $(5/p) = (p/5)(-1)^{{(p-1)(5-1)}over 4}=(p/5)(-1)^{(p-1)}$
$bullet$ The exponent $(p-1)$ must be $(mod2)$
$bullet$ $(p/5)$ means to find $p$ : $p(mod5)$ $rightarrow$ the choices are $1,3(mod5)$ because $p$ is prime
The moduli are coprime $(2,5)=1$ so I can study for the two final cases $(mod5times 2)=(mod10)$
Case $1(mod10)$:
Here $(1/5)=1$ and for the exponent $p=1(mod2)$ so the exponent $(p-1)$ must be even. So $(5/p)=1$ for $p=1(mod10)$ but also for $p=-1(mod10)$
Case $3(mod10)$:
Here $(3/5)=-1$ because it's not a quadratic residue, and for the exponent $p=3(mod2)=1(mod2)$ so the exponent $(p-1)$ must be even. So $(5/p)=(-1)(1)=-1$ for $p=3(mod10)$ but also for $p=-3(mod10)$
$Box$
I appreciate any kind of critics and corrections.
Thank you
elementary-number-theory modular-arithmetic legendre-symbol
$endgroup$
add a comment |
$begingroup$
Here I present the following proof in order to receive corrections or any kind of suggestion to improve my handling/knowledge of modular arithmetic:
Prove that $5$ is a quadratic residue $(mod p)$ with $p$ odd prime
iif $p equiv pm 1 mod 10$ ; prove also that $5$ is NOT a quadratic residue $(mod p)$
iif $p equiv pm 3 mod 10$.
Dim:
To check if $5$ is a quadratic residue $(mod p)$ I write the equivalent Legendre symbol with the condition:
$(5/p) = 1$
So I have for quadratic reciprocity $(5/p) = (p/5)(-1)^{{(p-1)(5-1)}over 4}=(p/5)(-1)^{(p-1)}$
$bullet$ The exponent $(p-1)$ must be $(mod2)$
$bullet$ $(p/5)$ means to find $p$ : $p(mod5)$ $rightarrow$ the choices are $1,3(mod5)$ because $p$ is prime
The moduli are coprime $(2,5)=1$ so I can study for the two final cases $(mod5times 2)=(mod10)$
Case $1(mod10)$:
Here $(1/5)=1$ and for the exponent $p=1(mod2)$ so the exponent $(p-1)$ must be even. So $(5/p)=1$ for $p=1(mod10)$ but also for $p=-1(mod10)$
Case $3(mod10)$:
Here $(3/5)=-1$ because it's not a quadratic residue, and for the exponent $p=3(mod2)=1(mod2)$ so the exponent $(p-1)$ must be even. So $(5/p)=(-1)(1)=-1$ for $p=3(mod10)$ but also for $p=-3(mod10)$
$Box$
I appreciate any kind of critics and corrections.
Thank you
elementary-number-theory modular-arithmetic legendre-symbol
$endgroup$
1
$begingroup$
There are more cases. A prime can be $2$ or $4 pmod{5}.$.
$endgroup$
– B. Goddard
Nov 30 '18 at 12:42
$begingroup$
I've excluded 2 and 4 because p must be prime and odd; is it formally wrong to exclude them in this way a-priori?
$endgroup$
– Alessar
Nov 30 '18 at 13:08
1
$begingroup$
Notice that $7 equiv 2 pmod{5}$ and $19equiv 4 pmod{5}$.
$endgroup$
– B. Goddard
Nov 30 '18 at 13:31
$begingroup$
Thanks for the tip, I'll review the proof with your suggestions, I hope to edit it for the final version
$endgroup$
– Alessar
Dec 1 '18 at 11:28
add a comment |
$begingroup$
Here I present the following proof in order to receive corrections or any kind of suggestion to improve my handling/knowledge of modular arithmetic:
Prove that $5$ is a quadratic residue $(mod p)$ with $p$ odd prime
iif $p equiv pm 1 mod 10$ ; prove also that $5$ is NOT a quadratic residue $(mod p)$
iif $p equiv pm 3 mod 10$.
Dim:
To check if $5$ is a quadratic residue $(mod p)$ I write the equivalent Legendre symbol with the condition:
$(5/p) = 1$
So I have for quadratic reciprocity $(5/p) = (p/5)(-1)^{{(p-1)(5-1)}over 4}=(p/5)(-1)^{(p-1)}$
$bullet$ The exponent $(p-1)$ must be $(mod2)$
$bullet$ $(p/5)$ means to find $p$ : $p(mod5)$ $rightarrow$ the choices are $1,3(mod5)$ because $p$ is prime
The moduli are coprime $(2,5)=1$ so I can study for the two final cases $(mod5times 2)=(mod10)$
Case $1(mod10)$:
Here $(1/5)=1$ and for the exponent $p=1(mod2)$ so the exponent $(p-1)$ must be even. So $(5/p)=1$ for $p=1(mod10)$ but also for $p=-1(mod10)$
Case $3(mod10)$:
Here $(3/5)=-1$ because it's not a quadratic residue, and for the exponent $p=3(mod2)=1(mod2)$ so the exponent $(p-1)$ must be even. So $(5/p)=(-1)(1)=-1$ for $p=3(mod10)$ but also for $p=-3(mod10)$
$Box$
I appreciate any kind of critics and corrections.
Thank you
elementary-number-theory modular-arithmetic legendre-symbol
$endgroup$
Here I present the following proof in order to receive corrections or any kind of suggestion to improve my handling/knowledge of modular arithmetic:
Prove that $5$ is a quadratic residue $(mod p)$ with $p$ odd prime
iif $p equiv pm 1 mod 10$ ; prove also that $5$ is NOT a quadratic residue $(mod p)$
iif $p equiv pm 3 mod 10$.
Dim:
To check if $5$ is a quadratic residue $(mod p)$ I write the equivalent Legendre symbol with the condition:
$(5/p) = 1$
So I have for quadratic reciprocity $(5/p) = (p/5)(-1)^{{(p-1)(5-1)}over 4}=(p/5)(-1)^{(p-1)}$
$bullet$ The exponent $(p-1)$ must be $(mod2)$
$bullet$ $(p/5)$ means to find $p$ : $p(mod5)$ $rightarrow$ the choices are $1,3(mod5)$ because $p$ is prime
The moduli are coprime $(2,5)=1$ so I can study for the two final cases $(mod5times 2)=(mod10)$
Case $1(mod10)$:
Here $(1/5)=1$ and for the exponent $p=1(mod2)$ so the exponent $(p-1)$ must be even. So $(5/p)=1$ for $p=1(mod10)$ but also for $p=-1(mod10)$
Case $3(mod10)$:
Here $(3/5)=-1$ because it's not a quadratic residue, and for the exponent $p=3(mod2)=1(mod2)$ so the exponent $(p-1)$ must be even. So $(5/p)=(-1)(1)=-1$ for $p=3(mod10)$ but also for $p=-3(mod10)$
$Box$
I appreciate any kind of critics and corrections.
Thank you
elementary-number-theory modular-arithmetic legendre-symbol
elementary-number-theory modular-arithmetic legendre-symbol
edited Nov 29 '18 at 15:17
Alessar
asked Nov 29 '18 at 14:41
AlessarAlessar
298115
298115
1
$begingroup$
There are more cases. A prime can be $2$ or $4 pmod{5}.$.
$endgroup$
– B. Goddard
Nov 30 '18 at 12:42
$begingroup$
I've excluded 2 and 4 because p must be prime and odd; is it formally wrong to exclude them in this way a-priori?
$endgroup$
– Alessar
Nov 30 '18 at 13:08
1
$begingroup$
Notice that $7 equiv 2 pmod{5}$ and $19equiv 4 pmod{5}$.
$endgroup$
– B. Goddard
Nov 30 '18 at 13:31
$begingroup$
Thanks for the tip, I'll review the proof with your suggestions, I hope to edit it for the final version
$endgroup$
– Alessar
Dec 1 '18 at 11:28
add a comment |
1
$begingroup$
There are more cases. A prime can be $2$ or $4 pmod{5}.$.
$endgroup$
– B. Goddard
Nov 30 '18 at 12:42
$begingroup$
I've excluded 2 and 4 because p must be prime and odd; is it formally wrong to exclude them in this way a-priori?
$endgroup$
– Alessar
Nov 30 '18 at 13:08
1
$begingroup$
Notice that $7 equiv 2 pmod{5}$ and $19equiv 4 pmod{5}$.
$endgroup$
– B. Goddard
Nov 30 '18 at 13:31
$begingroup$
Thanks for the tip, I'll review the proof with your suggestions, I hope to edit it for the final version
$endgroup$
– Alessar
Dec 1 '18 at 11:28
1
1
$begingroup$
There are more cases. A prime can be $2$ or $4 pmod{5}.$.
$endgroup$
– B. Goddard
Nov 30 '18 at 12:42
$begingroup$
There are more cases. A prime can be $2$ or $4 pmod{5}.$.
$endgroup$
– B. Goddard
Nov 30 '18 at 12:42
$begingroup$
I've excluded 2 and 4 because p must be prime and odd; is it formally wrong to exclude them in this way a-priori?
$endgroup$
– Alessar
Nov 30 '18 at 13:08
$begingroup$
I've excluded 2 and 4 because p must be prime and odd; is it formally wrong to exclude them in this way a-priori?
$endgroup$
– Alessar
Nov 30 '18 at 13:08
1
1
$begingroup$
Notice that $7 equiv 2 pmod{5}$ and $19equiv 4 pmod{5}$.
$endgroup$
– B. Goddard
Nov 30 '18 at 13:31
$begingroup$
Notice that $7 equiv 2 pmod{5}$ and $19equiv 4 pmod{5}$.
$endgroup$
– B. Goddard
Nov 30 '18 at 13:31
$begingroup$
Thanks for the tip, I'll review the proof with your suggestions, I hope to edit it for the final version
$endgroup$
– Alessar
Dec 1 '18 at 11:28
$begingroup$
Thanks for the tip, I'll review the proof with your suggestions, I hope to edit it for the final version
$endgroup$
– Alessar
Dec 1 '18 at 11:28
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
See my other post use Gauss lemma to find $(frac{n}{p})$:
$(frac{5}{p}) = 1 iff p equiv pm 1 mod 5$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018706%2fproof-that-5-is-a-quadratic-residue-mod-p-with-p-odd-prime-iif-p-equi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
See my other post use Gauss lemma to find $(frac{n}{p})$:
$(frac{5}{p}) = 1 iff p equiv pm 1 mod 5$
$endgroup$
add a comment |
$begingroup$
See my other post use Gauss lemma to find $(frac{n}{p})$:
$(frac{5}{p}) = 1 iff p equiv pm 1 mod 5$
$endgroup$
add a comment |
$begingroup$
See my other post use Gauss lemma to find $(frac{n}{p})$:
$(frac{5}{p}) = 1 iff p equiv pm 1 mod 5$
$endgroup$
See my other post use Gauss lemma to find $(frac{n}{p})$:
$(frac{5}{p}) = 1 iff p equiv pm 1 mod 5$
answered Jan 3 at 11:18
Maestro13Maestro13
1,081724
1,081724
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3018706%2fproof-that-5-is-a-quadratic-residue-mod-p-with-p-odd-prime-iif-p-equi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
There are more cases. A prime can be $2$ or $4 pmod{5}.$.
$endgroup$
– B. Goddard
Nov 30 '18 at 12:42
$begingroup$
I've excluded 2 and 4 because p must be prime and odd; is it formally wrong to exclude them in this way a-priori?
$endgroup$
– Alessar
Nov 30 '18 at 13:08
1
$begingroup$
Notice that $7 equiv 2 pmod{5}$ and $19equiv 4 pmod{5}$.
$endgroup$
– B. Goddard
Nov 30 '18 at 13:31
$begingroup$
Thanks for the tip, I'll review the proof with your suggestions, I hope to edit it for the final version
$endgroup$
– Alessar
Dec 1 '18 at 11:28