Whether supremum and partial derivative can be interchanged?
Recently, I study replica method derived from statistical physics. I have a confusion on following equation
begin{align}
mathcal{F}=-lim_{Mrightarrow infty}frac{1}{M}lim_{taurightarrow 0}frac{partial }{partial tau} underset{mathbf{Q},tilde{mathbf{Q}}}{supinf}left{alpha^{-1}G(mathbf{Q})-text{tr}left{mathbf{Q}tilde{mathbf{Q}}right}-frac{1}{M}log mathbb{E}_{mathbf{X}}left{exp left[text{tr}(mathbf{X}tilde{mathbf{Q}}mathbf{X}^T)right]right}right}
end{align}
where $mathbf{Q}=(c-q)mathbf{I}_{tau+1}+qboldsymbol{ee}^T$ and $tilde{mathbf{Q}}=(tilde{c}-tilde{q})mathbf{I}_{tau+1}+tilde{q}boldsymbol{ee}^T$ with $boldsymbol{e}in mathbb{R}^{tau+1}$ denoting a column vector whose elements are all 1.
In the most of paper about replica method, they always change the sup, inf and partial derivative like following
begin{align}
mathcal{F}=-lim_{Mrightarrow infty}frac{1}{M} underset{mathbf{Q},tilde{mathbf{Q}}}{supinf}left{
lim_{taurightarrow 0}frac{partial }{partial tau}left[
alpha^{-1}G(mathbf{Q})-text{tr}left{mathbf{Q}tilde{mathbf{Q}}right}-frac{1}{M}log mathbb{E}_{mathbf{X}}left{exp left[text{tr}(mathbf{X}tilde{mathbf{Q}}mathbf{X}^T)right]right}
right]
right}
end{align}
What I have thought?
As far as I know, I consider that both $sup$ and $inf$ are one limit. Generally, $lim$ and partial derivative can be interchanged.
I hope you can help me. This is extremely important for me. Thank you!
partial-derivative supremum-and-infimum
add a comment |
Recently, I study replica method derived from statistical physics. I have a confusion on following equation
begin{align}
mathcal{F}=-lim_{Mrightarrow infty}frac{1}{M}lim_{taurightarrow 0}frac{partial }{partial tau} underset{mathbf{Q},tilde{mathbf{Q}}}{supinf}left{alpha^{-1}G(mathbf{Q})-text{tr}left{mathbf{Q}tilde{mathbf{Q}}right}-frac{1}{M}log mathbb{E}_{mathbf{X}}left{exp left[text{tr}(mathbf{X}tilde{mathbf{Q}}mathbf{X}^T)right]right}right}
end{align}
where $mathbf{Q}=(c-q)mathbf{I}_{tau+1}+qboldsymbol{ee}^T$ and $tilde{mathbf{Q}}=(tilde{c}-tilde{q})mathbf{I}_{tau+1}+tilde{q}boldsymbol{ee}^T$ with $boldsymbol{e}in mathbb{R}^{tau+1}$ denoting a column vector whose elements are all 1.
In the most of paper about replica method, they always change the sup, inf and partial derivative like following
begin{align}
mathcal{F}=-lim_{Mrightarrow infty}frac{1}{M} underset{mathbf{Q},tilde{mathbf{Q}}}{supinf}left{
lim_{taurightarrow 0}frac{partial }{partial tau}left[
alpha^{-1}G(mathbf{Q})-text{tr}left{mathbf{Q}tilde{mathbf{Q}}right}-frac{1}{M}log mathbb{E}_{mathbf{X}}left{exp left[text{tr}(mathbf{X}tilde{mathbf{Q}}mathbf{X}^T)right]right}
right]
right}
end{align}
What I have thought?
As far as I know, I consider that both $sup$ and $inf$ are one limit. Generally, $lim$ and partial derivative can be interchanged.
I hope you can help me. This is extremely important for me. Thank you!
partial-derivative supremum-and-infimum
add a comment |
Recently, I study replica method derived from statistical physics. I have a confusion on following equation
begin{align}
mathcal{F}=-lim_{Mrightarrow infty}frac{1}{M}lim_{taurightarrow 0}frac{partial }{partial tau} underset{mathbf{Q},tilde{mathbf{Q}}}{supinf}left{alpha^{-1}G(mathbf{Q})-text{tr}left{mathbf{Q}tilde{mathbf{Q}}right}-frac{1}{M}log mathbb{E}_{mathbf{X}}left{exp left[text{tr}(mathbf{X}tilde{mathbf{Q}}mathbf{X}^T)right]right}right}
end{align}
where $mathbf{Q}=(c-q)mathbf{I}_{tau+1}+qboldsymbol{ee}^T$ and $tilde{mathbf{Q}}=(tilde{c}-tilde{q})mathbf{I}_{tau+1}+tilde{q}boldsymbol{ee}^T$ with $boldsymbol{e}in mathbb{R}^{tau+1}$ denoting a column vector whose elements are all 1.
In the most of paper about replica method, they always change the sup, inf and partial derivative like following
begin{align}
mathcal{F}=-lim_{Mrightarrow infty}frac{1}{M} underset{mathbf{Q},tilde{mathbf{Q}}}{supinf}left{
lim_{taurightarrow 0}frac{partial }{partial tau}left[
alpha^{-1}G(mathbf{Q})-text{tr}left{mathbf{Q}tilde{mathbf{Q}}right}-frac{1}{M}log mathbb{E}_{mathbf{X}}left{exp left[text{tr}(mathbf{X}tilde{mathbf{Q}}mathbf{X}^T)right]right}
right]
right}
end{align}
What I have thought?
As far as I know, I consider that both $sup$ and $inf$ are one limit. Generally, $lim$ and partial derivative can be interchanged.
I hope you can help me. This is extremely important for me. Thank you!
partial-derivative supremum-and-infimum
Recently, I study replica method derived from statistical physics. I have a confusion on following equation
begin{align}
mathcal{F}=-lim_{Mrightarrow infty}frac{1}{M}lim_{taurightarrow 0}frac{partial }{partial tau} underset{mathbf{Q},tilde{mathbf{Q}}}{supinf}left{alpha^{-1}G(mathbf{Q})-text{tr}left{mathbf{Q}tilde{mathbf{Q}}right}-frac{1}{M}log mathbb{E}_{mathbf{X}}left{exp left[text{tr}(mathbf{X}tilde{mathbf{Q}}mathbf{X}^T)right]right}right}
end{align}
where $mathbf{Q}=(c-q)mathbf{I}_{tau+1}+qboldsymbol{ee}^T$ and $tilde{mathbf{Q}}=(tilde{c}-tilde{q})mathbf{I}_{tau+1}+tilde{q}boldsymbol{ee}^T$ with $boldsymbol{e}in mathbb{R}^{tau+1}$ denoting a column vector whose elements are all 1.
In the most of paper about replica method, they always change the sup, inf and partial derivative like following
begin{align}
mathcal{F}=-lim_{Mrightarrow infty}frac{1}{M} underset{mathbf{Q},tilde{mathbf{Q}}}{supinf}left{
lim_{taurightarrow 0}frac{partial }{partial tau}left[
alpha^{-1}G(mathbf{Q})-text{tr}left{mathbf{Q}tilde{mathbf{Q}}right}-frac{1}{M}log mathbb{E}_{mathbf{X}}left{exp left[text{tr}(mathbf{X}tilde{mathbf{Q}}mathbf{X}^T)right]right}
right]
right}
end{align}
What I have thought?
As far as I know, I consider that both $sup$ and $inf$ are one limit. Generally, $lim$ and partial derivative can be interchanged.
I hope you can help me. This is extremely important for me. Thank you!
partial-derivative supremum-and-infimum
partial-derivative supremum-and-infimum
edited Nov 20 at 7:37
asked Nov 20 at 2:55
Qiuyun
778
778
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005874%2fwhether-supremum-and-partial-derivative-can-be-interchanged%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005874%2fwhether-supremum-and-partial-derivative-can-be-interchanged%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown