Prove that $frac{d}{dr}frac{1}{4 pi r^2} iint_{S_r} u dS = frac{1}{4 pi r^2} iint_{S_r} nabla u cdot dvec{S}$











up vote
0
down vote

favorite












How can I show that if $u$ is a $C^1$ function and $S_r = {(x, y, z) : x^2 + y^2 + z^2 = r}$, then for all $r$:



$$frac{d}{dr}frac{1}{4 pi r^2} iint_{S_r} u dS = frac{1}{4 pi r^2} iint_{S_r} nabla u cdot dvec{S}$$










share|cite|improve this question


























    up vote
    0
    down vote

    favorite












    How can I show that if $u$ is a $C^1$ function and $S_r = {(x, y, z) : x^2 + y^2 + z^2 = r}$, then for all $r$:



    $$frac{d}{dr}frac{1}{4 pi r^2} iint_{S_r} u dS = frac{1}{4 pi r^2} iint_{S_r} nabla u cdot dvec{S}$$










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      How can I show that if $u$ is a $C^1$ function and $S_r = {(x, y, z) : x^2 + y^2 + z^2 = r}$, then for all $r$:



      $$frac{d}{dr}frac{1}{4 pi r^2} iint_{S_r} u dS = frac{1}{4 pi r^2} iint_{S_r} nabla u cdot dvec{S}$$










      share|cite|improve this question













      How can I show that if $u$ is a $C^1$ function and $S_r = {(x, y, z) : x^2 + y^2 + z^2 = r}$, then for all $r$:



      $$frac{d}{dr}frac{1}{4 pi r^2} iint_{S_r} u dS = frac{1}{4 pi r^2} iint_{S_r} nabla u cdot dvec{S}$$







      multivariable-calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 19 at 18:58









      John

      31




      31






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          Get the "$r$" out of the limits of integration. With the substitution $rz = y$ you have
          $r^2 dS(u) = dS(y)$ so that $$frac 1{4pi r^2} iint_{S_r} u(y) , dS(y) = frac 1{4pi} iint_{S_1} u(rz) , dS(z) = frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z).$$
          The derivative is calculated using the chain rule:
          $$frac{d}{dr} u(rz_1,rz_2) = frac{partial u}{partial z_1}u(rz_1,rz_2) z_1 + frac{partial u}{partial z_2} u(rz_1,rz_2) z_2 = nabla u(rz_1,rz_2) cdot (z_1,z_2) = nabla u(rz) cdot z.$$ Re-apply the substitution $rz = y$ to obtain
          $$ frac{d}{dr} frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z) = frac 1{4pi} iint_{S_1} nabla u(rz) cdot z , dS(z) = frac 1{4pi r^2} iint_{S_r} nabla u(y) cdot frac yr , dS(y)$$



          Finally observe that the exterior unit normal vector to the sphere $S_r$ at a point $y in S_r$ is just $dfrac yr$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005358%2fprove-that-fracddr-frac14-pi-r2-iint-s-r-u-ds-frac14-pi-r%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote



            accepted










            Get the "$r$" out of the limits of integration. With the substitution $rz = y$ you have
            $r^2 dS(u) = dS(y)$ so that $$frac 1{4pi r^2} iint_{S_r} u(y) , dS(y) = frac 1{4pi} iint_{S_1} u(rz) , dS(z) = frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z).$$
            The derivative is calculated using the chain rule:
            $$frac{d}{dr} u(rz_1,rz_2) = frac{partial u}{partial z_1}u(rz_1,rz_2) z_1 + frac{partial u}{partial z_2} u(rz_1,rz_2) z_2 = nabla u(rz_1,rz_2) cdot (z_1,z_2) = nabla u(rz) cdot z.$$ Re-apply the substitution $rz = y$ to obtain
            $$ frac{d}{dr} frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z) = frac 1{4pi} iint_{S_1} nabla u(rz) cdot z , dS(z) = frac 1{4pi r^2} iint_{S_r} nabla u(y) cdot frac yr , dS(y)$$



            Finally observe that the exterior unit normal vector to the sphere $S_r$ at a point $y in S_r$ is just $dfrac yr$.






            share|cite|improve this answer

























              up vote
              0
              down vote



              accepted










              Get the "$r$" out of the limits of integration. With the substitution $rz = y$ you have
              $r^2 dS(u) = dS(y)$ so that $$frac 1{4pi r^2} iint_{S_r} u(y) , dS(y) = frac 1{4pi} iint_{S_1} u(rz) , dS(z) = frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z).$$
              The derivative is calculated using the chain rule:
              $$frac{d}{dr} u(rz_1,rz_2) = frac{partial u}{partial z_1}u(rz_1,rz_2) z_1 + frac{partial u}{partial z_2} u(rz_1,rz_2) z_2 = nabla u(rz_1,rz_2) cdot (z_1,z_2) = nabla u(rz) cdot z.$$ Re-apply the substitution $rz = y$ to obtain
              $$ frac{d}{dr} frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z) = frac 1{4pi} iint_{S_1} nabla u(rz) cdot z , dS(z) = frac 1{4pi r^2} iint_{S_r} nabla u(y) cdot frac yr , dS(y)$$



              Finally observe that the exterior unit normal vector to the sphere $S_r$ at a point $y in S_r$ is just $dfrac yr$.






              share|cite|improve this answer























                up vote
                0
                down vote



                accepted







                up vote
                0
                down vote



                accepted






                Get the "$r$" out of the limits of integration. With the substitution $rz = y$ you have
                $r^2 dS(u) = dS(y)$ so that $$frac 1{4pi r^2} iint_{S_r} u(y) , dS(y) = frac 1{4pi} iint_{S_1} u(rz) , dS(z) = frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z).$$
                The derivative is calculated using the chain rule:
                $$frac{d}{dr} u(rz_1,rz_2) = frac{partial u}{partial z_1}u(rz_1,rz_2) z_1 + frac{partial u}{partial z_2} u(rz_1,rz_2) z_2 = nabla u(rz_1,rz_2) cdot (z_1,z_2) = nabla u(rz) cdot z.$$ Re-apply the substitution $rz = y$ to obtain
                $$ frac{d}{dr} frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z) = frac 1{4pi} iint_{S_1} nabla u(rz) cdot z , dS(z) = frac 1{4pi r^2} iint_{S_r} nabla u(y) cdot frac yr , dS(y)$$



                Finally observe that the exterior unit normal vector to the sphere $S_r$ at a point $y in S_r$ is just $dfrac yr$.






                share|cite|improve this answer












                Get the "$r$" out of the limits of integration. With the substitution $rz = y$ you have
                $r^2 dS(u) = dS(y)$ so that $$frac 1{4pi r^2} iint_{S_r} u(y) , dS(y) = frac 1{4pi} iint_{S_1} u(rz) , dS(z) = frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z).$$
                The derivative is calculated using the chain rule:
                $$frac{d}{dr} u(rz_1,rz_2) = frac{partial u}{partial z_1}u(rz_1,rz_2) z_1 + frac{partial u}{partial z_2} u(rz_1,rz_2) z_2 = nabla u(rz_1,rz_2) cdot (z_1,z_2) = nabla u(rz) cdot z.$$ Re-apply the substitution $rz = y$ to obtain
                $$ frac{d}{dr} frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z) = frac 1{4pi} iint_{S_1} nabla u(rz) cdot z , dS(z) = frac 1{4pi r^2} iint_{S_r} nabla u(y) cdot frac yr , dS(y)$$



                Finally observe that the exterior unit normal vector to the sphere $S_r$ at a point $y in S_r$ is just $dfrac yr$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 19 at 21:05









                Umberto P.

                38.3k13063




                38.3k13063






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005358%2fprove-that-fracddr-frac14-pi-r2-iint-s-r-u-ds-frac14-pi-r%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to change which sound is reproduced for terminal bell?

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?

                    Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents