Prove that $frac{d}{dr}frac{1}{4 pi r^2} iint_{S_r} u dS = frac{1}{4 pi r^2} iint_{S_r} nabla u cdot dvec{S}$
up vote
0
down vote
favorite
How can I show that if $u$ is a $C^1$ function and $S_r = {(x, y, z) : x^2 + y^2 + z^2 = r}$, then for all $r$:
$$frac{d}{dr}frac{1}{4 pi r^2} iint_{S_r} u dS = frac{1}{4 pi r^2} iint_{S_r} nabla u cdot dvec{S}$$
multivariable-calculus
add a comment |
up vote
0
down vote
favorite
How can I show that if $u$ is a $C^1$ function and $S_r = {(x, y, z) : x^2 + y^2 + z^2 = r}$, then for all $r$:
$$frac{d}{dr}frac{1}{4 pi r^2} iint_{S_r} u dS = frac{1}{4 pi r^2} iint_{S_r} nabla u cdot dvec{S}$$
multivariable-calculus
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
How can I show that if $u$ is a $C^1$ function and $S_r = {(x, y, z) : x^2 + y^2 + z^2 = r}$, then for all $r$:
$$frac{d}{dr}frac{1}{4 pi r^2} iint_{S_r} u dS = frac{1}{4 pi r^2} iint_{S_r} nabla u cdot dvec{S}$$
multivariable-calculus
How can I show that if $u$ is a $C^1$ function and $S_r = {(x, y, z) : x^2 + y^2 + z^2 = r}$, then for all $r$:
$$frac{d}{dr}frac{1}{4 pi r^2} iint_{S_r} u dS = frac{1}{4 pi r^2} iint_{S_r} nabla u cdot dvec{S}$$
multivariable-calculus
multivariable-calculus
asked Nov 19 at 18:58
John
31
31
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Get the "$r$" out of the limits of integration. With the substitution $rz = y$ you have
$r^2 dS(u) = dS(y)$ so that $$frac 1{4pi r^2} iint_{S_r} u(y) , dS(y) = frac 1{4pi} iint_{S_1} u(rz) , dS(z) = frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z).$$
The derivative is calculated using the chain rule:
$$frac{d}{dr} u(rz_1,rz_2) = frac{partial u}{partial z_1}u(rz_1,rz_2) z_1 + frac{partial u}{partial z_2} u(rz_1,rz_2) z_2 = nabla u(rz_1,rz_2) cdot (z_1,z_2) = nabla u(rz) cdot z.$$ Re-apply the substitution $rz = y$ to obtain
$$ frac{d}{dr} frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z) = frac 1{4pi} iint_{S_1} nabla u(rz) cdot z , dS(z) = frac 1{4pi r^2} iint_{S_r} nabla u(y) cdot frac yr , dS(y)$$
Finally observe that the exterior unit normal vector to the sphere $S_r$ at a point $y in S_r$ is just $dfrac yr$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005358%2fprove-that-fracddr-frac14-pi-r2-iint-s-r-u-ds-frac14-pi-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Get the "$r$" out of the limits of integration. With the substitution $rz = y$ you have
$r^2 dS(u) = dS(y)$ so that $$frac 1{4pi r^2} iint_{S_r} u(y) , dS(y) = frac 1{4pi} iint_{S_1} u(rz) , dS(z) = frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z).$$
The derivative is calculated using the chain rule:
$$frac{d}{dr} u(rz_1,rz_2) = frac{partial u}{partial z_1}u(rz_1,rz_2) z_1 + frac{partial u}{partial z_2} u(rz_1,rz_2) z_2 = nabla u(rz_1,rz_2) cdot (z_1,z_2) = nabla u(rz) cdot z.$$ Re-apply the substitution $rz = y$ to obtain
$$ frac{d}{dr} frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z) = frac 1{4pi} iint_{S_1} nabla u(rz) cdot z , dS(z) = frac 1{4pi r^2} iint_{S_r} nabla u(y) cdot frac yr , dS(y)$$
Finally observe that the exterior unit normal vector to the sphere $S_r$ at a point $y in S_r$ is just $dfrac yr$.
add a comment |
up vote
0
down vote
accepted
Get the "$r$" out of the limits of integration. With the substitution $rz = y$ you have
$r^2 dS(u) = dS(y)$ so that $$frac 1{4pi r^2} iint_{S_r} u(y) , dS(y) = frac 1{4pi} iint_{S_1} u(rz) , dS(z) = frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z).$$
The derivative is calculated using the chain rule:
$$frac{d}{dr} u(rz_1,rz_2) = frac{partial u}{partial z_1}u(rz_1,rz_2) z_1 + frac{partial u}{partial z_2} u(rz_1,rz_2) z_2 = nabla u(rz_1,rz_2) cdot (z_1,z_2) = nabla u(rz) cdot z.$$ Re-apply the substitution $rz = y$ to obtain
$$ frac{d}{dr} frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z) = frac 1{4pi} iint_{S_1} nabla u(rz) cdot z , dS(z) = frac 1{4pi r^2} iint_{S_r} nabla u(y) cdot frac yr , dS(y)$$
Finally observe that the exterior unit normal vector to the sphere $S_r$ at a point $y in S_r$ is just $dfrac yr$.
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Get the "$r$" out of the limits of integration. With the substitution $rz = y$ you have
$r^2 dS(u) = dS(y)$ so that $$frac 1{4pi r^2} iint_{S_r} u(y) , dS(y) = frac 1{4pi} iint_{S_1} u(rz) , dS(z) = frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z).$$
The derivative is calculated using the chain rule:
$$frac{d}{dr} u(rz_1,rz_2) = frac{partial u}{partial z_1}u(rz_1,rz_2) z_1 + frac{partial u}{partial z_2} u(rz_1,rz_2) z_2 = nabla u(rz_1,rz_2) cdot (z_1,z_2) = nabla u(rz) cdot z.$$ Re-apply the substitution $rz = y$ to obtain
$$ frac{d}{dr} frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z) = frac 1{4pi} iint_{S_1} nabla u(rz) cdot z , dS(z) = frac 1{4pi r^2} iint_{S_r} nabla u(y) cdot frac yr , dS(y)$$
Finally observe that the exterior unit normal vector to the sphere $S_r$ at a point $y in S_r$ is just $dfrac yr$.
Get the "$r$" out of the limits of integration. With the substitution $rz = y$ you have
$r^2 dS(u) = dS(y)$ so that $$frac 1{4pi r^2} iint_{S_r} u(y) , dS(y) = frac 1{4pi} iint_{S_1} u(rz) , dS(z) = frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z).$$
The derivative is calculated using the chain rule:
$$frac{d}{dr} u(rz_1,rz_2) = frac{partial u}{partial z_1}u(rz_1,rz_2) z_1 + frac{partial u}{partial z_2} u(rz_1,rz_2) z_2 = nabla u(rz_1,rz_2) cdot (z_1,z_2) = nabla u(rz) cdot z.$$ Re-apply the substitution $rz = y$ to obtain
$$ frac{d}{dr} frac 1{4pi} iint_{S_1} u(rz_1,rz_2) , dS(z) = frac 1{4pi} iint_{S_1} nabla u(rz) cdot z , dS(z) = frac 1{4pi r^2} iint_{S_r} nabla u(y) cdot frac yr , dS(y)$$
Finally observe that the exterior unit normal vector to the sphere $S_r$ at a point $y in S_r$ is just $dfrac yr$.
answered Nov 19 at 21:05
Umberto P.
38.3k13063
38.3k13063
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005358%2fprove-that-fracddr-frac14-pi-r2-iint-s-r-u-ds-frac14-pi-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown