Distribution of X-Y when X and Y are independent geometric
up vote
0
down vote
favorite
$X$ and $Y$ are independent geometric distributions with parameter $p$. Find the distribution for $X-Y$
I am aware that there are many similar questions. My problem with this specific transformation is that I cannot solve the summation I end up with.
This is what I have done:
$$Z = X - Y$$
$$P(Z=z) = P(X-Y=z)$$
$$= sum_{k=1}^infty P(Y=k)P(X=z+k)$$
$$= sum_{k=1}^infty p(1-p)^{k-1} p(1-p)^{z+k-1}$$
Somehow the answer should be:
$$frac{p(1-p)^{|z|}}{2-p} $$
How does this sum turn into this final solution? Or have I done a mistake in the previous steps. Any help is appreciated, thanks!
probability probability-distributions summation transformation
add a comment |
up vote
0
down vote
favorite
$X$ and $Y$ are independent geometric distributions with parameter $p$. Find the distribution for $X-Y$
I am aware that there are many similar questions. My problem with this specific transformation is that I cannot solve the summation I end up with.
This is what I have done:
$$Z = X - Y$$
$$P(Z=z) = P(X-Y=z)$$
$$= sum_{k=1}^infty P(Y=k)P(X=z+k)$$
$$= sum_{k=1}^infty p(1-p)^{k-1} p(1-p)^{z+k-1}$$
Somehow the answer should be:
$$frac{p(1-p)^{|z|}}{2-p} $$
How does this sum turn into this final solution? Or have I done a mistake in the previous steps. Any help is appreciated, thanks!
probability probability-distributions summation transformation
Note that $z$ belongs to the set of all integers. There are two cases to consider when finding the distribution of $Z$: when $kge 1$ ( so that $zge 0$ ) and when $kge 1-z$ ( so that $z<0$ ). You have written the sum for the first case. Combining both cases you would get the final answer as given.
– StubbornAtom
Nov 19 at 9:00
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$X$ and $Y$ are independent geometric distributions with parameter $p$. Find the distribution for $X-Y$
I am aware that there are many similar questions. My problem with this specific transformation is that I cannot solve the summation I end up with.
This is what I have done:
$$Z = X - Y$$
$$P(Z=z) = P(X-Y=z)$$
$$= sum_{k=1}^infty P(Y=k)P(X=z+k)$$
$$= sum_{k=1}^infty p(1-p)^{k-1} p(1-p)^{z+k-1}$$
Somehow the answer should be:
$$frac{p(1-p)^{|z|}}{2-p} $$
How does this sum turn into this final solution? Or have I done a mistake in the previous steps. Any help is appreciated, thanks!
probability probability-distributions summation transformation
$X$ and $Y$ are independent geometric distributions with parameter $p$. Find the distribution for $X-Y$
I am aware that there are many similar questions. My problem with this specific transformation is that I cannot solve the summation I end up with.
This is what I have done:
$$Z = X - Y$$
$$P(Z=z) = P(X-Y=z)$$
$$= sum_{k=1}^infty P(Y=k)P(X=z+k)$$
$$= sum_{k=1}^infty p(1-p)^{k-1} p(1-p)^{z+k-1}$$
Somehow the answer should be:
$$frac{p(1-p)^{|z|}}{2-p} $$
How does this sum turn into this final solution? Or have I done a mistake in the previous steps. Any help is appreciated, thanks!
probability probability-distributions summation transformation
probability probability-distributions summation transformation
asked Nov 19 at 4:51
SolidSnake
102
102
Note that $z$ belongs to the set of all integers. There are two cases to consider when finding the distribution of $Z$: when $kge 1$ ( so that $zge 0$ ) and when $kge 1-z$ ( so that $z<0$ ). You have written the sum for the first case. Combining both cases you would get the final answer as given.
– StubbornAtom
Nov 19 at 9:00
add a comment |
Note that $z$ belongs to the set of all integers. There are two cases to consider when finding the distribution of $Z$: when $kge 1$ ( so that $zge 0$ ) and when $kge 1-z$ ( so that $z<0$ ). You have written the sum for the first case. Combining both cases you would get the final answer as given.
– StubbornAtom
Nov 19 at 9:00
Note that $z$ belongs to the set of all integers. There are two cases to consider when finding the distribution of $Z$: when $kge 1$ ( so that $zge 0$ ) and when $kge 1-z$ ( so that $z<0$ ). You have written the sum for the first case. Combining both cases you would get the final answer as given.
– StubbornAtom
Nov 19 at 9:00
Note that $z$ belongs to the set of all integers. There are two cases to consider when finding the distribution of $Z$: when $kge 1$ ( so that $zge 0$ ) and when $kge 1-z$ ( so that $z<0$ ). You have written the sum for the first case. Combining both cases you would get the final answer as given.
– StubbornAtom
Nov 19 at 9:00
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Suppose $z ge 0$,begin{align}sum_{k=1}^infty p(1-p)^{k-1} p(1-p)^{z+k-1} &= p^2sum_{k=1}^infty (1-p)^{z+2k-2} \
&=p^2(1-p)^z sum_{k=1}^infty ((1-p)^2)^{k-1}\
&=frac{p^2(1-p)^z}{1-(1-p)^2}\
&=frac{p^2(1-p)^z}{(2-p)p}\
&=frac{p(1-p)^z}{2-p}end{align}
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Suppose $z ge 0$,begin{align}sum_{k=1}^infty p(1-p)^{k-1} p(1-p)^{z+k-1} &= p^2sum_{k=1}^infty (1-p)^{z+2k-2} \
&=p^2(1-p)^z sum_{k=1}^infty ((1-p)^2)^{k-1}\
&=frac{p^2(1-p)^z}{1-(1-p)^2}\
&=frac{p^2(1-p)^z}{(2-p)p}\
&=frac{p(1-p)^z}{2-p}end{align}
add a comment |
up vote
0
down vote
accepted
Suppose $z ge 0$,begin{align}sum_{k=1}^infty p(1-p)^{k-1} p(1-p)^{z+k-1} &= p^2sum_{k=1}^infty (1-p)^{z+2k-2} \
&=p^2(1-p)^z sum_{k=1}^infty ((1-p)^2)^{k-1}\
&=frac{p^2(1-p)^z}{1-(1-p)^2}\
&=frac{p^2(1-p)^z}{(2-p)p}\
&=frac{p(1-p)^z}{2-p}end{align}
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Suppose $z ge 0$,begin{align}sum_{k=1}^infty p(1-p)^{k-1} p(1-p)^{z+k-1} &= p^2sum_{k=1}^infty (1-p)^{z+2k-2} \
&=p^2(1-p)^z sum_{k=1}^infty ((1-p)^2)^{k-1}\
&=frac{p^2(1-p)^z}{1-(1-p)^2}\
&=frac{p^2(1-p)^z}{(2-p)p}\
&=frac{p(1-p)^z}{2-p}end{align}
Suppose $z ge 0$,begin{align}sum_{k=1}^infty p(1-p)^{k-1} p(1-p)^{z+k-1} &= p^2sum_{k=1}^infty (1-p)^{z+2k-2} \
&=p^2(1-p)^z sum_{k=1}^infty ((1-p)^2)^{k-1}\
&=frac{p^2(1-p)^z}{1-(1-p)^2}\
&=frac{p^2(1-p)^z}{(2-p)p}\
&=frac{p(1-p)^z}{2-p}end{align}
answered Nov 19 at 4:59
Siong Thye Goh
97k1463116
97k1463116
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004536%2fdistribution-of-x-y-when-x-and-y-are-independent-geometric%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Note that $z$ belongs to the set of all integers. There are two cases to consider when finding the distribution of $Z$: when $kge 1$ ( so that $zge 0$ ) and when $kge 1-z$ ( so that $z<0$ ). You have written the sum for the first case. Combining both cases you would get the final answer as given.
– StubbornAtom
Nov 19 at 9:00