How do I draw the dashed lines as shown in this figure












6















I want to draw the dashed lines as shown in the below figure:



enter image description here



I have achieved the following so far:



enter image description here



MWE:



documentclass{article}
usepackage{tikz}
usepackage{xcolor}
usetikzlibrary{decorations.pathmorphing}
tikzset{zigzag/.style={decorate,decoration=zigzag}}
begin{document}
begin{tikzpicture}
coordinate (c) at (0,-2);
coordinate (d) at (4,-2);
coordinate (e) at (2,-4);
draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
draw[thick] (a) -- (c);
draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
end{tikzpicture}
end{document}









share|improve this question





























    6















    I want to draw the dashed lines as shown in the below figure:



    enter image description here



    I have achieved the following so far:



    enter image description here



    MWE:



    documentclass{article}
    usepackage{tikz}
    usepackage{xcolor}
    usetikzlibrary{decorations.pathmorphing}
    tikzset{zigzag/.style={decorate,decoration=zigzag}}
    begin{document}
    begin{tikzpicture}
    coordinate (c) at (0,-2);
    coordinate (d) at (4,-2);
    coordinate (e) at (2,-4);
    draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
    draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
    draw[thick] (a) -- (c);
    draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
    end{tikzpicture}
    end{document}









    share|improve this question



























      6












      6








      6








      I want to draw the dashed lines as shown in the below figure:



      enter image description here



      I have achieved the following so far:



      enter image description here



      MWE:



      documentclass{article}
      usepackage{tikz}
      usepackage{xcolor}
      usetikzlibrary{decorations.pathmorphing}
      tikzset{zigzag/.style={decorate,decoration=zigzag}}
      begin{document}
      begin{tikzpicture}
      coordinate (c) at (0,-2);
      coordinate (d) at (4,-2);
      coordinate (e) at (2,-4);
      draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
      draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
      draw[thick] (a) -- (c);
      draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
      end{tikzpicture}
      end{document}









      share|improve this question
















      I want to draw the dashed lines as shown in the below figure:



      enter image description here



      I have achieved the following so far:



      enter image description here



      MWE:



      documentclass{article}
      usepackage{tikz}
      usepackage{xcolor}
      usetikzlibrary{decorations.pathmorphing}
      tikzset{zigzag/.style={decorate,decoration=zigzag}}
      begin{document}
      begin{tikzpicture}
      coordinate (c) at (0,-2);
      coordinate (d) at (4,-2);
      coordinate (e) at (2,-4);
      draw[thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
      draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
      draw[thick] (a) -- (c);
      draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8);
      end{tikzpicture}
      end{document}






      tikz-pgf






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Feb 27 at 12:18









      JouleV

      4,91111139




      4,91111139










      asked Feb 27 at 10:10









      subham sonisubham soni

      4,07682981




      4,07682981






















          3 Answers
          3






          active

          oldest

          votes


















          5














          The task is not so difficult with decorations.markings:



          documentclass[tikz,margin=3mm]{standalone}
          usetikzlibrary{decorations.pathmorphing,decorations.markings}
          tikzset{zigzag/.style={decorate,decoration=zigzag}}
          begin{document}
          begin{tikzpicture}
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[thick,red,zigzag,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (x);
          },
          decorate
          }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
          draw[thick,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (y);
          },
          decorate
          }] (a) -- (c);
          draw[dashed,red,thick] (x)--(y);
          end{tikzpicture}
          end{document}


          enter image description here



          Bonus



          Your entire figure:



          documentclass[tikz,margin=3mm]{standalone}
          usepackage{mathrsfs}
          usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
          tikzset{zigzag/.style={decorate,decoration=zigzag}}
          begin{document}
          begin{tikzpicture}
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[thick,red,zigzag,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (x);,
          mark=at position 0.5 with coordinate (singularity);
          },
          decorate
          }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
          draw[thick,postaction={
          decoration={
          markings,
          mark=at position 0.7 with coordinate (y);
          },
          decorate
          }] (a) -- (c);
          draw[dashed,red,thick] (x)--(y);
          node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
          draw[red,->] (es)--($(y)+(-.1,-.1)$);
          node[above=10ex of singularity,red] (sn) {singularity};
          draw[red,->] (sn)--($(singularity)+(0,1)$);
          node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
          path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
          path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
          path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
          node[right=0pt of d] {$i^0$};
          draw[postaction={
          decoration={
          markings,
          mark=at position 0.15 with coordinate (enblue);
          },
          decorate
          },thick,blue] (d) to[out=-150,in=-30] (c);
          draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
          path[postaction={
          decoration={
          markings,
          mark=at position 0.35 with coordinate (engren);
          },
          decorate
          }] (c)--(b);
          draw[thick,green!50!black,postaction={
          decoration={
          markings,
          mark=at position 0.6 with coordinate (enargr);
          },
          decorate
          }] (d) to[out=180,in=-30] (engren);
          draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
          draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer


























          • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

            – subham soni
            Feb 27 at 11:59











          • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            Feb 27 at 12:02











          • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

            – JouleV
            Feb 27 at 12:08











          • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            Feb 27 at 12:10











          • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

            – JouleV
            Feb 27 at 12:11



















          3














          It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



          To draw a dashed parallel, I used the calc library.



          The principle.
          I kept your path draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8); I shifted the starting point to the right by trial and error to find the right intersection.



          I calculated the intersection named i of this path and the zigzag. Then I build a parallel path called dash through this point.



          New version



          Since the blue quadrilateral has right angles, to draw a parallel, I project orthogonally the point i on the ac side.



          documentclass[tikz,border=5mm]{standalone}
          usetikzlibrary{decorations.pathmorphing}
          usetikzlibrary{intersections}
          usetikzlibrary{calc}
          tikzset{zigzag/.style={decorate,decoration=zigzag}}
          begin{document}
          begin{tikzpicture}
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
          draw[thick,name path=ac] (a) -- (c);
          path[name path=trans] (.9,0.08) -- (0,-0.8);
          coordinate [name intersections={of= zz and trans,by={i}}];
          % orthogonal projection of (i) on (a)--(c)
          coordinate (l) at ($(a)!(i)!(c)$);
          draw [thick,red,dashed] (i) -- (l);
          end{tikzpicture}
          end{document}


          Old version



          I calculate the intersection of this path with the other side (the ac side) and draw the parallel segment (i)--(l).



          documentclass[tikz,border=5mm]{standalone}

          %usepackage{xcolor}
          usetikzlibrary{decorations.pathmorphing}
          usetikzlibrary{intersections}
          usetikzlibrary{calc}
          tikzset{zigzag/.style={decorate,decoration=zigzag}}
          begin{document}
          begin{tikzpicture}
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
          draw[thick,name path=ac] (a) -- (c);
          path[name path=trans] (.9,0.08) -- (0,-0.8);
          coordinate [name intersections={of= zz and trans,by={i}}];
          coordinate (j) at ($(i)+(c)-(b)$);
          coordinate(k) at ($(i)+(b)-(c)$);
          path[name path=dash](j)--(k);
          path[name intersections={of= ac and dash,by={l}}];
          draw [thick,red,dashed] (i) -- (l);
          end{tikzpicture}
          end{document}


          screenshot






          share|improve this answer


























          • the line isn't at the exact location like in the picture

            – subham soni
            Feb 27 at 10:21











          • I just corrected that, is that okay with you?

            – AndréC
            Feb 27 at 10:31











          • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

            – subham soni
            Feb 27 at 11:57











          • I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

            – AndréC
            Feb 27 at 12:43





















          2














          You can easily calculate where a point in the middle between two other points lies:



          documentclass{article}
          usepackage{tikz}
          usepackage{xcolor}
          usetikzlibrary{decorations.pathmorphing,calc}
          tikzset{
          zigzag/.style={
          decorate,
          decoration={
          zigzag,
          amplitude=2.5pt,
          segment length=2.5mm
          }
          }
          }
          begin{document}
          defposition{0.6}
          begin{tikzpicture}[thick]
          coordinate (c) at (0,-2);
          coordinate (d) at (4,-2);
          coordinate (e) at (2,-4);
          draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
          draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
          draw (a) -- (c);
          draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer























            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "85"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476907%2fhow-do-i-draw-the-dashed-lines-as-shown-in-this-figure%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5














            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer


























            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              Feb 27 at 11:59











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              Feb 27 at 12:02











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              Feb 27 at 12:08











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              Feb 27 at 12:10











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              Feb 27 at 12:11
















            5














            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer


























            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              Feb 27 at 11:59











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              Feb 27 at 12:02











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              Feb 27 at 12:08











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              Feb 27 at 12:10











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              Feb 27 at 12:11














            5












            5








            5







            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer















            The task is not so difficult with decorations.markings:



            documentclass[tikz,margin=3mm]{standalone}
            usetikzlibrary{decorations.pathmorphing,decorations.markings}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            end{tikzpicture}
            end{document}


            enter image description here



            Bonus



            Your entire figure:



            documentclass[tikz,margin=3mm]{standalone}
            usepackage{mathrsfs}
            usetikzlibrary{decorations.pathmorphing,decorations.markings,calc,positioning}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[thick,red,zigzag,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (x);,
            mark=at position 0.5 with coordinate (singularity);
            },
            decorate
            }] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- cycle;
            draw[thick,postaction={
            decoration={
            markings,
            mark=at position 0.7 with coordinate (y);
            },
            decorate
            }] (a) -- (c);
            draw[dashed,red,thick] (x)--(y);
            node[below left=1em and 1em of y,align=right,red] (es) {excision\surface};
            draw[red,->] (es)--($(y)+(-.1,-.1)$);
            node[above=10ex of singularity,red] (sn) {singularity};
            draw[red,->] (sn)--($(singularity)+(0,1)$);
            node[below left=.5ex and 2ex of b] {$mathcal{H}^+$};
            path (b) -- (d) node[midway,above right] {$mathcal{I}^+$};
            path (d) -- (e) node[midway,below right] {$mathcal{I}^-$};
            path (e) -- (c) node[midway,below left] {$mathcal{H}^-$};
            node[right=0pt of d] {$i^0$};
            draw[postaction={
            decoration={
            markings,
            mark=at position 0.15 with coordinate (enblue);
            },
            decorate
            },thick,blue] (d) to[out=-150,in=-30] (c);
            draw[<-,thick,blue] (enblue)--($(enblue)+(-60:1)$)--($(enblue)+(-60:1)+(.2,0)$) node[right,align=left] {$t$ = constant\in Schwarzschild\coordinates};
            path[postaction={
            decoration={
            markings,
            mark=at position 0.35 with coordinate (engren);
            },
            decorate
            }] (c)--(b);
            draw[thick,green!50!black,postaction={
            decoration={
            markings,
            mark=at position 0.6 with coordinate (enargr);
            },
            decorate
            }] (d) to[out=180,in=-30] (engren);
            draw[thick,dashed,green!50!black] (engren)--($(engren)+(150:0.7)$);
            draw[<-,thick,green!50!black] (enargr)--($(enargr)+(60:0.75)$)--($(enargr)+(60:0.75)+(2,0)$) node[right,align=left] {$tau$ = constant\in Kerr-Schild\coordinates};
            end{tikzpicture}
            end{document}


            enter image description here







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Feb 27 at 10:56

























            answered Feb 27 at 10:19









            JouleVJouleV

            4,91111139




            4,91111139













            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              Feb 27 at 11:59











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              Feb 27 at 12:02











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              Feb 27 at 12:08











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              Feb 27 at 12:10











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              Feb 27 at 12:11



















            • Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

              – subham soni
              Feb 27 at 11:59











            • Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              Feb 27 at 12:02











            • @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

              – JouleV
              Feb 27 at 12:08











            • Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

              – subham soni
              Feb 27 at 12:10











            • @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

              – JouleV
              Feb 27 at 12:11

















            Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

            – subham soni
            Feb 27 at 11:59





            Can you please tell me how did you calculate mark=at position 0.7 with coordinate (x);. Is there an easy way to determine this value

            – subham soni
            Feb 27 at 11:59













            Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            Feb 27 at 12:02





            Also, can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            Feb 27 at 12:02













            @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

            – JouleV
            Feb 27 at 12:08





            @subhamsoni You can see why I used 0.7 if you use 0.5 or 0.8 or 0.75. Looking at the revisions you can see that I originally used 0.8, but then I changed to 0.7 to fit your figure better.

            – JouleV
            Feb 27 at 12:08













            Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            Feb 27 at 12:10





            Sure. can you please explain draw[thick,red,zigzag,postaction={ decoration={ markings, mark=at position 0.7 with coordinate (x); } the meaning of the code

            – subham soni
            Feb 27 at 12:10













            @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

            – JouleV
            Feb 27 at 12:11





            @subhamsoni It is explained very well in section 50.5 of the TikZ - PGF manual.

            – JouleV
            Feb 27 at 12:11











            3














            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



            The principle.
            I kept your path draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8); I shifted the starting point to the right by trial and error to find the right intersection.



            I calculated the intersection named i of this path and the zigzag. Then I build a parallel path called dash through this point.



            New version



            Since the blue quadrilateral has right angles, to draw a parallel, I project orthogonally the point i on the ac side.



            documentclass[tikz,border=5mm]{standalone}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            % orthogonal projection of (i) on (a)--(c)
            coordinate (l) at ($(a)!(i)!(c)$);
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            Old version



            I calculate the intersection of this path with the other side (the ac side) and draw the parallel segment (i)--(l).



            documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={l}}];
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            screenshot






            share|improve this answer


























            • the line isn't at the exact location like in the picture

              – subham soni
              Feb 27 at 10:21











            • I just corrected that, is that okay with you?

              – AndréC
              Feb 27 at 10:31











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              Feb 27 at 11:57











            • I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

              – AndréC
              Feb 27 at 12:43


















            3














            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



            The principle.
            I kept your path draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8); I shifted the starting point to the right by trial and error to find the right intersection.



            I calculated the intersection named i of this path and the zigzag. Then I build a parallel path called dash through this point.



            New version



            Since the blue quadrilateral has right angles, to draw a parallel, I project orthogonally the point i on the ac side.



            documentclass[tikz,border=5mm]{standalone}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            % orthogonal projection of (i) on (a)--(c)
            coordinate (l) at ($(a)!(i)!(c)$);
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            Old version



            I calculate the intersection of this path with the other side (the ac side) and draw the parallel segment (i)--(l).



            documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={l}}];
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            screenshot






            share|improve this answer


























            • the line isn't at the exact location like in the picture

              – subham soni
              Feb 27 at 10:21











            • I just corrected that, is that okay with you?

              – AndréC
              Feb 27 at 10:31











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              Feb 27 at 11:57











            • I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

              – AndréC
              Feb 27 at 12:43
















            3












            3








            3







            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



            The principle.
            I kept your path draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8); I shifted the starting point to the right by trial and error to find the right intersection.



            I calculated the intersection named i of this path and the zigzag. Then I build a parallel path called dash through this point.



            New version



            Since the blue quadrilateral has right angles, to draw a parallel, I project orthogonally the point i on the ac side.



            documentclass[tikz,border=5mm]{standalone}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            % orthogonal projection of (i) on (a)--(c)
            coordinate (l) at ($(a)!(i)!(c)$);
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            Old version



            I calculate the intersection of this path with the other side (the ac side) and draw the parallel segment (i)--(l).



            documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={l}}];
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            screenshot






            share|improve this answer















            It is possible to use the intersections library which allows to calculate the intersection point of 2 paths. Here the zigzag path and the dashed path.



            To draw a dashed parallel, I used the calc library.



            The principle.
            I kept your path draw[thick,red,dashed] (0.8,0.08) -- (0,-0.8); I shifted the starting point to the right by trial and error to find the right intersection.



            I calculated the intersection named i of this path and the zigzag. Then I build a parallel path called dash through this point.



            New version



            Since the blue quadrilateral has right angles, to draw a parallel, I project orthogonally the point i on the ac side.



            documentclass[tikz,border=5mm]{standalone}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            % orthogonal projection of (i) on (a)--(c)
            coordinate (l) at ($(a)!(i)!(c)$);
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            Old version



            I calculate the intersection of this path with the other side (the ac side) and draw the parallel segment (i)--(l).



            documentclass[tikz,border=5mm]{standalone}

            %usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing}
            usetikzlibrary{intersections}
            usetikzlibrary{calc}
            tikzset{zigzag/.style={decorate,decoration=zigzag}}
            begin{document}
            begin{tikzpicture}
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[name path=zz,thick,red,zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[thick,fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw[thick,name path=ac] (a) -- (c);
            path[name path=trans] (.9,0.08) -- (0,-0.8);
            coordinate [name intersections={of= zz and trans,by={i}}];
            coordinate (j) at ($(i)+(c)-(b)$);
            coordinate(k) at ($(i)+(b)-(c)$);
            path[name path=dash](j)--(k);
            path[name intersections={of= ac and dash,by={l}}];
            draw [thick,red,dashed] (i) -- (l);
            end{tikzpicture}
            end{document}


            screenshot







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Feb 27 at 15:58

























            answered Feb 27 at 10:15









            AndréCAndréC

            9,90311547




            9,90311547













            • the line isn't at the exact location like in the picture

              – subham soni
              Feb 27 at 10:21











            • I just corrected that, is that okay with you?

              – AndréC
              Feb 27 at 10:31











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              Feb 27 at 11:57











            • I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

              – AndréC
              Feb 27 at 12:43





















            • the line isn't at the exact location like in the picture

              – subham soni
              Feb 27 at 10:21











            • I just corrected that, is that okay with you?

              – AndréC
              Feb 27 at 10:31











            • can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

              – subham soni
              Feb 27 at 11:57











            • I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

              – AndréC
              Feb 27 at 12:43



















            the line isn't at the exact location like in the picture

            – subham soni
            Feb 27 at 10:21





            the line isn't at the exact location like in the picture

            – subham soni
            Feb 27 at 10:21













            I just corrected that, is that okay with you?

            – AndréC
            Feb 27 at 10:31





            I just corrected that, is that okay with you?

            – AndréC
            Feb 27 at 10:31













            can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

            – subham soni
            Feb 27 at 11:57





            can you please tell how did you calculate path[name path=dash] (.9,0.08) -- (0,-0.8);

            – subham soni
            Feb 27 at 11:57













            I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

            – AndréC
            Feb 27 at 12:43







            I renamed the paths so that the construction would be easier to understand. I'm looking for the intersection point between the zz and trans path. This point is called i, then I draw the parallel [ik].

            – AndréC
            Feb 27 at 12:43













            2














            You can easily calculate where a point in the middle between two other points lies:



            documentclass{article}
            usepackage{tikz}
            usepackage{xcolor}
            usetikzlibrary{decorations.pathmorphing,calc}
            tikzset{
            zigzag/.style={
            decorate,
            decoration={
            zigzag,
            amplitude=2.5pt,
            segment length=2.5mm
            }
            }
            }
            begin{document}
            defposition{0.6}
            begin{tikzpicture}[thick]
            coordinate (c) at (0,-2);
            coordinate (d) at (4,-2);
            coordinate (e) at (2,-4);
            draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
            draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
            draw (a) -- (c);
            draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
            end{tikzpicture}
            end{document}


            enter image description here






            share|improve this answer




























              2














              You can easily calculate where a point in the middle between two other points lies:



              documentclass{article}
              usepackage{tikz}
              usepackage{xcolor}
              usetikzlibrary{decorations.pathmorphing,calc}
              tikzset{
              zigzag/.style={
              decorate,
              decoration={
              zigzag,
              amplitude=2.5pt,
              segment length=2.5mm
              }
              }
              }
              begin{document}
              defposition{0.6}
              begin{tikzpicture}[thick]
              coordinate (c) at (0,-2);
              coordinate (d) at (4,-2);
              coordinate (e) at (2,-4);
              draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
              draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
              draw (a) -- (c);
              draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
              end{tikzpicture}
              end{document}


              enter image description here






              share|improve this answer


























                2












                2








                2







                You can easily calculate where a point in the middle between two other points lies:



                documentclass{article}
                usepackage{tikz}
                usepackage{xcolor}
                usetikzlibrary{decorations.pathmorphing,calc}
                tikzset{
                zigzag/.style={
                decorate,
                decoration={
                zigzag,
                amplitude=2.5pt,
                segment length=2.5mm
                }
                }
                }
                begin{document}
                defposition{0.6}
                begin{tikzpicture}[thick]
                coordinate (c) at (0,-2);
                coordinate (d) at (4,-2);
                coordinate (e) at (2,-4);
                draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
                draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
                draw (a) -- (c);
                draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
                end{tikzpicture}
                end{document}


                enter image description here






                share|improve this answer













                You can easily calculate where a point in the middle between two other points lies:



                documentclass{article}
                usepackage{tikz}
                usepackage{xcolor}
                usetikzlibrary{decorations.pathmorphing,calc}
                tikzset{
                zigzag/.style={
                decorate,
                decoration={
                zigzag,
                amplitude=2.5pt,
                segment length=2.5mm
                }
                }
                }
                begin{document}
                defposition{0.6}
                begin{tikzpicture}[thick]
                coordinate (c) at (0,-2);
                coordinate (d) at (4,-2);
                coordinate (e) at (2,-4);
                draw[red, zigzag] (-2,0) coordinate(a) -- (2,0) coordinate(b);
                draw[fill=blue!20] (c) -- (b) -- (d) -- (e) -- (c);
                draw (a) -- (c);
                draw[red, densely dashed, shorten >=0.5pt] ($(a)!position!(c)$) -- ($(a)!position!(b)$);
                end{tikzpicture}
                end{document}


                enter image description here







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Feb 27 at 10:28









                BubayaBubaya

                657310




                657310






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f476907%2fhow-do-i-draw-the-dashed-lines-as-shown-in-this-figure%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

                    How to change which sound is reproduced for terminal bell?

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?