Problem with tkz-tab and its the PSTricks package equivalent











up vote
4
down vote

favorite












My code:(use tkz-tab)



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb,newcent}
usepackage{tkz-tab}
begin{document}
begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-dfrac{1}{4}$ , +/$g(1)$, -/$m$, +/$+infty$}
end{tikzpicture}
end{document}


The result compiling:



enter image description here



Question:




  1. How to move m-1/4 lower than m? It means


enter image description here
2. Does PSTricks has the command or package(I don't know) the same as tkz-tab? Assume without any the command or package, so how to create it only use the pspicture environment?










share|improve this question
























  • You're right, it seems I misunderstood. I've added a new code (leaving the previous one, as it might be of interest to some). Is it better?
    – Bernard
    Dec 4 at 14:09















up vote
4
down vote

favorite












My code:(use tkz-tab)



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb,newcent}
usepackage{tkz-tab}
begin{document}
begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-dfrac{1}{4}$ , +/$g(1)$, -/$m$, +/$+infty$}
end{tikzpicture}
end{document}


The result compiling:



enter image description here



Question:




  1. How to move m-1/4 lower than m? It means


enter image description here
2. Does PSTricks has the command or package(I don't know) the same as tkz-tab? Assume without any the command or package, so how to create it only use the pspicture environment?










share|improve this question
























  • You're right, it seems I misunderstood. I've added a new code (leaving the previous one, as it might be of interest to some). Is it better?
    – Bernard
    Dec 4 at 14:09













up vote
4
down vote

favorite









up vote
4
down vote

favorite











My code:(use tkz-tab)



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb,newcent}
usepackage{tkz-tab}
begin{document}
begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-dfrac{1}{4}$ , +/$g(1)$, -/$m$, +/$+infty$}
end{tikzpicture}
end{document}


The result compiling:



enter image description here



Question:




  1. How to move m-1/4 lower than m? It means


enter image description here
2. Does PSTricks has the command or package(I don't know) the same as tkz-tab? Assume without any the command or package, so how to create it only use the pspicture environment?










share|improve this question















My code:(use tkz-tab)



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb,newcent}
usepackage{tkz-tab}
begin{document}
begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-dfrac{1}{4}$ , +/$g(1)$, -/$m$, +/$+infty$}
end{tikzpicture}
end{document}


The result compiling:



enter image description here



Question:




  1. How to move m-1/4 lower than m? It means


enter image description here
2. Does PSTricks has the command or package(I don't know) the same as tkz-tab? Assume without any the command or package, so how to create it only use the pspicture environment?







pstricks pspicture tkz-tab






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Dec 6 at 6:56









Artificial Stupidity

4,78111039




4,78111039










asked Dec 4 at 8:43









chishimotoji

543212




543212












  • You're right, it seems I misunderstood. I've added a new code (leaving the previous one, as it might be of interest to some). Is it better?
    – Bernard
    Dec 4 at 14:09


















  • You're right, it seems I misunderstood. I've added a new code (leaving the previous one, as it might be of interest to some). Is it better?
    – Bernard
    Dec 4 at 14:09
















You're right, it seems I misunderstood. I've added a new code (leaving the previous one, as it might be of interest to some). Is it better?
– Bernard
Dec 4 at 14:09




You're right, it seems I misunderstood. I've added a new code (leaving the previous one, as it might be of interest to some). Is it better?
– Bernard
Dec 4 at 14:09










3 Answers
3






active

oldest

votes

















up vote
4
down vote



accepted










For your first question, is this what you want? Note I replaced $dfrac{1}{4}$ with $mfrac{1}{4}$ (medium sized fraction from nccmath) , as I think that, used as a numerical coefficient, it looks nicer. The level alignment of m-mfrac{1}{4} and m is obtained adding a vphantom{mfrac{1}{4}} to the latter, so the boxes containing both minima have the same height.



documentclass[12pt,a4paper]{article}
usepackage{amsmath, amssymb, newcent}
usepackage{tkz-tab}
usepackage{nccmath}

begin{document}

begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-mfrac{1}{4}$ , +/$g(1)$, -/$mvphantom{mfrac 14}$, +/$+infty$}
end{tikzpicture}

end{document}


enter image description here



Edit:
It seems I misundertood the requirement. I hope the following code is more like you want (same preamble):



begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-mfrac{1}{4}$ , +/$g(1)$, -/raisebox{4ex}{$mvphantom{mfrac{1}4}$}, +/$+infty$}
end{tikzpicture}


enter image description here






share|improve this answer























  • I see it seem was not changed. " m-1/4 " = " m "
    – chishimotoji
    Dec 4 at 12:02












  • Both ms are now at the same level, using a vphantom{mfrac{1}{4} for the rightmost m
    – Bernard
    Dec 4 at 12:40










  • You can edit your answer to show what you say. My english is not good.
    – chishimotoji
    Dec 4 at 12:58










  • I've added some explanations. Is that clearer?
    – Bernard
    Dec 4 at 13:28










  • smash[t]{vphantom{mfrac{1}{4}}} seems better. Or dfrac, of course, if dfrac is used in the other place.
    – egreg
    Dec 4 at 13:40




















up vote
4
down vote













You can use the new tablvar package (documentation in French):



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb}
usepackage[tikz]{tablvar}

begin{document}

[
begin{tablvar}{4}
hline
x & -infty && a && 1 && 3 && +infty \
hline
g'(x) && - & 0 & + & 0 & - & 0 & + & \
hline
variations{
mil{g(x)} &
haut{+infty} &&
bas{m-dfrac{1}{4mathstrut}} &&
haut{g(1)} &&
bas{m} &&
haut{+infty}
}
hline
end{tablvar}
]

end{document}


Removing the tikz option makes the package rely on PSTricks.



enter image description here



If you want to easily move the m up (which I can't see the necessity of), raise it.



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb}
usepackage[tikz]{tablvar}

begin{document}

[
begin{tablvar}{4}
hline
x & -infty && a && 1 && 3 && +infty \
hline
g'(x) && - & 0 & + & 0 & - & 0 & + & \
hline
variations{
mil{g(x)} &
haut{+infty} &&
bas{m-dfrac{1}{4mathstrut}} &&
haut{g(1)} &&
bas{raisebox{2ex}{$mmathstrut$}} &&
haut{+infty}
}
hline
end{tablvar}
]

end{document}


enter image description here






share|improve this answer























  • Thank you but you should see edited question! My aim is to set "m" at that position.
    – chishimotoji
    Dec 4 at 14:02












  • @chishimotoji Added. Probably there are more features in the package documentation.
    – egreg
    Dec 4 at 14:04


















up vote
4
down vote













Out of topic!
For polynomials and rational functions with minimum one rational zero
we can do the factorization and finding the (only) rational roots with the help of
the xintexpr and polexpr packages. Then the table is build automatic.



So we can type for e.g. in the document



poldef zf1(x):=(-1/4)(x^2-4x+3)(x-2)^2(x^2+1)(x^2+2);
PolReduceCoeffs{zf1}
Given is the derivative:
[f^{prime}:t mapsto PolTypeset[t]{zf1} = typesetFactors[t]{zf1} ]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][t][zf1]


Here is the code for a full example.



documentclass[fleqn,svgnames,x11names,dvipsnames]{article}

usepackage[a4paper,margin=1.25cm]{geometry}
usepackage{amsmath,amssymb}
usepackage{xintexpr}
usepackage{polexpr}
usepackage{xfp,xparse,expl3,xstring}
usepackage{booktabs}
usepackage{siunitx}
sisetup{group-separator={,},output-decimal-marker={,},exponent-product=cdot,per-mode=fraction,product-units=single,
input-product=*,output-product=cdot,unit-mode=text,quotient-mode=fraction,locale=DE,range-phrase = { bis }}
usepackage{pstricks}

letfunkPolToExpr
letSTZeroLPolSturmIsolatedZeroLeft

NewExpandableDocumentCommand{XcalcR}{sO{8}m}{% calculates #3 and rounds to #2 decimals; non formating: for formated output use Xcalc not XcalcR
PolDecToString{xintREZ{xinttheiexpr[#2]reduce(#3)relax}}%
}

NewDocumentCommand{Xcalc}{t+stDsO{2}m}{% calculates #5, rounds to #4 decimals (trailing zeros are supressed) and typesets the number with num-macro formatting
IfBooleanT{#1}{xintifSgn{xinttheexpr #6relax}{}{+}{+}}% or as fraction, reduced or not reduced and with #3=D is a boolean in displaystyle
IfBooleanTF{#2}%
{IfBooleanT{#3}{displaystyle}%
IfBooleanTF{#4}%
{xintSignedFrac{xinttheexpr #6relax}}%
{xintSignedFrac{xinttheexpr reduce(#6)relax}}%
}%
{num{PolDecToString{xintREZ{xinttheiexpr[#5]reduce(#6)relax}}}}%
}


newcommand{NullStellen}[1]{%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{x_{##1} = Xcalc{PolSturmIsolatedZeroLeft{#1}{##1}}%
xintifForLast{}{; }}%
}


NewDocumentCommand{hackNst}{O{nt}D(){x}m}{%
xintifboolexpr{PolSturmNbOfIsolatedZeros{#3}=0}{}{%
xintiloop [1+1]
expandafterdefexpandaftertmpxintbracediloopindex
xintdefvar #2tmp = PolSturmIsolatedZeroLeft{#3}tmp;
xintdefvar #1tmp = PolSturmIsolatedZeroMultiplicity{#3}tmp;
ifnumxintiloopindex<numexprPolSturmNbOfIsolatedZeros{#3}relax
repeat
}%
}

NewDocumentCommand{GenFloatSturmZeros}{ssO{9}D(){x}m}{%
IfBooleanTF{#1}%
{%
PolToSturm{#5}{#5}%
PolSturmIsolateZeros**{#5}%
PolEnsureIntervalLengths{#5}{-#3}%
IfBooleanF{#2}{hackNst(#4){#5}}%
}%
{%
PolGenFloatVariant{#5}%
PolToSturm{#5}{#5}%
PolSturmIsolateZeros**{#5}%
PolEnsureIntervalLengths{#5}{-#3}%
}%
}


defsmstext{steigt}%
defsmftext{fällt}
defHPtext{Hochpkt.}
defTPtext{Tiefpkt.}
defSPtext{Terrassenpkt.}
defDiffRowtxt{f^{prime}}
deflueckColor#1{colorlet{lckColor}{#1}}
lueckColor{BrickRed}
defPoltxt{textcolor{lckColor}{Polstelle}}
defLueckentxt{textcolor{lckColor}{Def.-Lücke}}
defNotdeftxt{textcolor{lckColor}{diagup}}

NewDocumentCommand{VZTabelle}{sO{f}O{x}O{#21}!d()}{%
IfValueTF{#5}{%
PolGCD{#4}{#5}{commonfactorA}%
poldef erwzaehlerA(x) := (#4(x)#5(x))/(commonfactorA(x))^2 ;%
poldef gekuerzterNenner(x) := #5(x)/commonfactorA(x) ;%
PolGCD{erwzaehlerA}{commonfactorA}{commonfactorB}%
poldef commonfactorC(x) := commonfactorA(x)/commonfactorB(x) ;%
poldef erwzaehler(x) := erwzaehlerA(x)commonfactorC(x) ;%
}%
{%
poldef erwzaehler(x) := #4(x) ;%
poldef commonfactorC(x) := 1 ;%
}%
PolToSturm{erwzaehler}{erwzaehler}%
PolSturmIsolateZeros**{erwzaehler}%
PolEnsureIntervalLengths{erwzaehler}{-9}%
begin{tabular}{*{XcalcR{2+2*PolSturmNbOfIsolatedZeros{erwzaehler}}}{>{$}c<{$}}}
IfBooleanF{#1}{toprule}
IfValueTF{#5}{Firstrow{erwzaehler}{#3}{#5}}{Firstrow{erwzaehler}{#3}{1}}
IfValueTF{#5}{VZmakerows{erwzaehler}{#5}{#4}{#3}}{VZmakerows{erwzaehler}{1}{#4}{#3}}
IfValueTF{#5}{Diffrow{DiffRowtxt}{erwzaehler}{#3}{#5}}{Diffrow{DiffRowtxt}{erwzaehler}{#3}{1}}
IfValueTF{#5}{Graphrow{#2}{erwzaehler}{#5}}{Graphrow{#2}{erwzaehler}{1}}
IfBooleanF{#1}{ \ bottomrule}
end{tabular}%
}

defleadcoef#1{xintifboolexpr{PolLeadingCoeff{#1}=1}{}{Xcalc{PolLeadingCoeff{#1}}cdot}}

defnst#1#2{Xcalc*{STZeroL{#1}{#2}}}

defVZfktwertL#1#2{xintifSgn{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}-0.001relax)relax}{-}{0}{+}}

defVZfktwertR#1#2{xintifSgn{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}+0.001relax)relax}{-}{0}{+}}

defVZfktwert#1#2{xintifSgn{xinttheexpr #1(STZeroL{#1}{#2})relax}{-}{0}{+}}

deftabfactor#1#2#3#4{%
xintifboolexpr{STZeroL{#1}{#2}=0}%
{#4}%
{(#4Xcalc+*{-STZeroL{#1}{#2}})
xintifboolexpr{PolSturmIsolatedZeroMultiplicity{#1}{#2}=1}%
{%
xintifboolexpr{commonfactorC(STZeroL{#1}{#2})=0}%
{^{0}}%
{}%
}%
{%
xintifboolexpr{commonfactorC(STZeroL{#1}{#2})=0}%
{%
^{0}
}%
{%
^{PolSturmIsolatedZeroMultiplicity{#1}{#2}}
}%
}%
}%
}


defMonotonieL#1#2{xintifSgn{xinttheexpr #1(XcalcR{STZeroL{#1}{#2}-0.001})relax}{text{smftext}}{0}{text{smstext}}}

defMonotonieR#1#2{xintifSgn{xinttheexpr #1(XcalcR{STZeroL{#1}{#2}+0.001})relax}{text{smftext}}{0}{text{smstext}}}

defExtrema#1#2{xintifboolexpr{xinttheexpr (#1(XcalcR{STZeroL{#1}{#2}-0.001}))*(#1(XcalcR{STZeroL{#1}{#2}+0.001}))relax >0}%
{text{SPtext}}%
{%
xintifboolexpr{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}-0.001relax)relax>0}%
{text{HPtext}}%
{text{TPtext}}%
}%
}%


NewDocumentCommand{VZtabfac}{st{>}mmm}{%
IfBooleanTF{#1}%
{xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5})^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}}%
{%
IfBooleanTF{#2}%
{%
xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5}+0.001)^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}%
}%
{%
xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5}-0.001)^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}%
}%
}%
}


newcommand{VZmakerows}[4]{%
xintifboolexpr{PolLeadingCoeff{#1}<0}%
{%
xintSignedFrac{xintIrr{PolLeadingCoeff{#1}}} & -
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do { & - & - } \ midrule
}%
{}%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{tabfactor{#1}{##1}{#3}{#4} & VZtabfac{#1}{##1}{1}%
xintFor* ##2 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{ &
IfDecimal{#2}%
{VZtabfac*{#1}{##1}{##2}}%
{%
xintifboolexpr{xinttheexpr #2(STZeroL{#1}{##2})relax = 0}%
{Notdeftxt}
{VZtabfac*{#1}{##1}{##2}}%
}%
& VZtabfac>{#1}{##1}{##2}
}
\ midrule
}
}


newcommand{Firstrow}[3]{%
#2 & -infty<#2<nst{#1}{1} & IfDecimal{#3}{#2=nst{#1}{1}}%
{xintifboolexpr{xinttheexpr #3(STZeroL{#1}{1})relax = 0 }%
{textcolor{lckColor}{#2=nst{#1}{1}}}%
{#2=nst{#1}{1}}%
}%
xintifboolexpr{PolSturmNbOfIsolatedZeros{#1}>1}{%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}-1}}
do
{%
& nst{#1}{xinttheexpr ##1relax}<#2<nst{#1}{xinttheexpr ##1+1relax} &
IfDecimal{#3}%
{#2=nst{#1}{xinttheexpr ##1+1relax}}%
{xintifboolexpr{xinttheexpr #3(STZeroL{#1}{xinttheexpr ##1+1relax})relax = 0 }%
{textcolor{lckColor}{#2=nst{#1}{xinttheexpr ##1+1relax}}}%
{#2=nst{#1}{xinttheexpr ##1+1relax}}%
}%
}%
}%
{}%
& nst{#1}{PolSturmNbOfIsolatedZeros{#1}}<#2<+infty\ midrule
}


NewDocumentCommand{Diffrow}{mmmm}{%
#1(#3)
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#2}}}
do
{& VZfktwertL{#2}{##1} &
IfDecimal{#4}%
{VZfktwert{#2}{##1}}%
{%
xintifboolexpr{xinttheexpr #4(STZeroL{#2}{##1})relax = 0}%
{Notdeftxt}
{VZfktwert{#2}{##1}}%
}%
}%
& VZfktwertR{#2}{PolSturmNbOfIsolatedZeros{#2}} \ midrule
}


newcommand{Graphrow}[3]{%
text{G}_{#1}
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#2}}}
do
{& MonotonieL{#2}{##1} & IfDecimal{#3}{Extrema{#2}{##1}}{%
xintifboolexpr{xinttheexpr #3(STZeroL{#2}{##1})relax = 0}%
{%
xintifboolexpr{xinttheexpr gekuerzterNenner(STZeroL{#2}{##1})relax =0}%
{text{Poltxt}}
{text{Lueckentxt}}
}%
{Extrema{#2}{##1}}%
}%
}%
& MonotonieR{#2}{PolSturmNbOfIsolatedZeros{#2}}
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin of code for factorization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Counter for LOOP over the roots of f
newcountzeroCount
% Set counter to 1
zeroCount=1

% Proof if a root is "0" then only write x and not (x-0) ...
% factor the roots like (x-x_1) if x_1>0, (x+x_1) if x_1<0
newcommand{factorZeros}[1]{%
xintifZero{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}%
{varname}
{left(varnamexintiiifSgn{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}{+}{-}{-}
xintSignedFrac{xintIrr{xintAbs{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}}}right)
}
}

% Don't write multiplicity of a root in case it is =1
newcommand{ignoreMultiplicityOne}[1]{%
xintifOne{PolSturmIsolatedZeroMultiplicity{#1}{thezeroCount}}{}{PolSturmIsolatedZeroMultiplicity{#1}{thezeroCount}}
}

% Hide leading coefficient if leading coefficient is + or - 1.
newcommand{hideLeadingCoeff}[1]{%
xintifOne{xintAbs{PolLeadingCoeff{#1}}}%
{xintiiifSgn{PolLeadingCoeff{#1}}{-}{}{}}
{xintSignedFrac{xintIrr{PolLeadingCoeff{#1}}}}
}

% Typeset polynomial as factors of its rational roots: f(x)=a_n(x-x_1)(x-x_2)...(x-x_n)(quotient function)
newcommand{typesetFactors}[2][x]{%
defvarname{#1}%
% #1 = function
PolToSturm{#2}{#2}%
PolSturmIsolateZeros**{#2}%
xintifboolexpr{PolDegree{#2}<2}{xintifboolexpr{PolDegree{#2}<1}{PolTypeset[varname]{#2}}{left(PolTypeset[varname]{#2}right)}}{%
xintifboolexpr{PolDegree{#2}=PolDegree{#2_norr}}{PolTypeset[varname]{#2}}{%
poldef #2_rat(x) := #2(x)/#2_norr(x);
poldef #2_norr_VZ(x) := xintSgn{PolLeadingCoeff{#2_norr}}#2_norr(x);
PolToSturm{#2_rat}{#2_rat}%
PolSturmIsolateZeros**{#2_rat}%
%
hideLeadingCoeff{#2}%
% Loop over all rational zeros of the function f = #2 ; #2_rat is the part with only rational zeros
% #2_rat is defined as #2(x)/#2_norr(x), and #2_norr is the part of #2 with no rational roots (square-free version is #2_irr )
loop
factorZeros{#2_rat}^{ignoreMultiplicityOne{#2_rat}}%
advance zeroCount 1
ifnum zeroCount<xinttheexprPolSturmNbOfIsolatedZeros{#2_rat}+1relax
repeat
xintifZero{PolDegree{#2_norr}}%
{}%
{left(PolTypeset[varname]{#2_norr_VZ}right)}%
}}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% End of code for factorization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

defsmstext{$nearrow$}
defsmftext{$searrow$}
defHPtext{H}
defTPtext{T}
defSPtext{Ter.}
defDiffRowtxt{f^{prime}}
defPoltxt{textcolor{lckColor}{Pol}}
defLueckentxt{textcolor{lckColor}{Loch}}


begin{document}

poldef zf1(x):=(-1/4)(x^2-4x+3)(x-2)^2(x^2+1)(x^2+2);
PolReduceCoeffs{zf1}
Given is the derivative:
[f^{prime}:t mapsto PolTypeset[t]{zf1} = typesetFactors[t]{zf1} ]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][t][zf1]
bigskip

poldef zf1(x):=(x^2-4x+3)*(x-2);
PolReduceCoeffs{zf1}
poldef nf1(x):=(x^2+1)(x-2)^2;
PolReduceCoeffs{nf1}
Given is the derivative:
[f^{prime}:x mapsto frac{PolTypeset{zf1}}{PolTypeset{nf1}} = frac{typesetFactors{zf1}}{typesetFactors{nf1}}]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][x][zf1](nf1)

end{document}


enter image description here






share|improve this answer























  • (+1) Thank you for your problem expansion. But truly I don't understand anything. hihi :-))
    – chishimotoji
    Dec 6 at 8:32










  • very impressive but you seem to be using some development version of polexpr which finds rational roots as current version 0.6 does not have the double starred PolSturmIsolateZeros**.... I am very jealous!
    – jfbu
    Dec 6 at 9:51










  • @jfbu yes, you are right. I actually forgot that.
    – Thomas
    Dec 6 at 11:17










  • I will make my best to ping the polexpr author to make soon a release of dev version....
    – jfbu
    Dec 6 at 13:41










  • The code has been adapted to the new syntax of polexpr 0.7, which will appear shortly on ctan. Many thanks to the diligent author of polexpr.
    – Thomas
    2 days ago











Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f463103%2fproblem-with-tkz-tab-and-its-the-pstricks-package-equivalent%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
4
down vote



accepted










For your first question, is this what you want? Note I replaced $dfrac{1}{4}$ with $mfrac{1}{4}$ (medium sized fraction from nccmath) , as I think that, used as a numerical coefficient, it looks nicer. The level alignment of m-mfrac{1}{4} and m is obtained adding a vphantom{mfrac{1}{4}} to the latter, so the boxes containing both minima have the same height.



documentclass[12pt,a4paper]{article}
usepackage{amsmath, amssymb, newcent}
usepackage{tkz-tab}
usepackage{nccmath}

begin{document}

begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-mfrac{1}{4}$ , +/$g(1)$, -/$mvphantom{mfrac 14}$, +/$+infty$}
end{tikzpicture}

end{document}


enter image description here



Edit:
It seems I misundertood the requirement. I hope the following code is more like you want (same preamble):



begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-mfrac{1}{4}$ , +/$g(1)$, -/raisebox{4ex}{$mvphantom{mfrac{1}4}$}, +/$+infty$}
end{tikzpicture}


enter image description here






share|improve this answer























  • I see it seem was not changed. " m-1/4 " = " m "
    – chishimotoji
    Dec 4 at 12:02












  • Both ms are now at the same level, using a vphantom{mfrac{1}{4} for the rightmost m
    – Bernard
    Dec 4 at 12:40










  • You can edit your answer to show what you say. My english is not good.
    – chishimotoji
    Dec 4 at 12:58










  • I've added some explanations. Is that clearer?
    – Bernard
    Dec 4 at 13:28










  • smash[t]{vphantom{mfrac{1}{4}}} seems better. Or dfrac, of course, if dfrac is used in the other place.
    – egreg
    Dec 4 at 13:40

















up vote
4
down vote



accepted










For your first question, is this what you want? Note I replaced $dfrac{1}{4}$ with $mfrac{1}{4}$ (medium sized fraction from nccmath) , as I think that, used as a numerical coefficient, it looks nicer. The level alignment of m-mfrac{1}{4} and m is obtained adding a vphantom{mfrac{1}{4}} to the latter, so the boxes containing both minima have the same height.



documentclass[12pt,a4paper]{article}
usepackage{amsmath, amssymb, newcent}
usepackage{tkz-tab}
usepackage{nccmath}

begin{document}

begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-mfrac{1}{4}$ , +/$g(1)$, -/$mvphantom{mfrac 14}$, +/$+infty$}
end{tikzpicture}

end{document}


enter image description here



Edit:
It seems I misundertood the requirement. I hope the following code is more like you want (same preamble):



begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-mfrac{1}{4}$ , +/$g(1)$, -/raisebox{4ex}{$mvphantom{mfrac{1}4}$}, +/$+infty$}
end{tikzpicture}


enter image description here






share|improve this answer























  • I see it seem was not changed. " m-1/4 " = " m "
    – chishimotoji
    Dec 4 at 12:02












  • Both ms are now at the same level, using a vphantom{mfrac{1}{4} for the rightmost m
    – Bernard
    Dec 4 at 12:40










  • You can edit your answer to show what you say. My english is not good.
    – chishimotoji
    Dec 4 at 12:58










  • I've added some explanations. Is that clearer?
    – Bernard
    Dec 4 at 13:28










  • smash[t]{vphantom{mfrac{1}{4}}} seems better. Or dfrac, of course, if dfrac is used in the other place.
    – egreg
    Dec 4 at 13:40















up vote
4
down vote



accepted







up vote
4
down vote



accepted






For your first question, is this what you want? Note I replaced $dfrac{1}{4}$ with $mfrac{1}{4}$ (medium sized fraction from nccmath) , as I think that, used as a numerical coefficient, it looks nicer. The level alignment of m-mfrac{1}{4} and m is obtained adding a vphantom{mfrac{1}{4}} to the latter, so the boxes containing both minima have the same height.



documentclass[12pt,a4paper]{article}
usepackage{amsmath, amssymb, newcent}
usepackage{tkz-tab}
usepackage{nccmath}

begin{document}

begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-mfrac{1}{4}$ , +/$g(1)$, -/$mvphantom{mfrac 14}$, +/$+infty$}
end{tikzpicture}

end{document}


enter image description here



Edit:
It seems I misundertood the requirement. I hope the following code is more like you want (same preamble):



begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-mfrac{1}{4}$ , +/$g(1)$, -/raisebox{4ex}{$mvphantom{mfrac{1}4}$}, +/$+infty$}
end{tikzpicture}


enter image description here






share|improve this answer














For your first question, is this what you want? Note I replaced $dfrac{1}{4}$ with $mfrac{1}{4}$ (medium sized fraction from nccmath) , as I think that, used as a numerical coefficient, it looks nicer. The level alignment of m-mfrac{1}{4} and m is obtained adding a vphantom{mfrac{1}{4}} to the latter, so the boxes containing both minima have the same height.



documentclass[12pt,a4paper]{article}
usepackage{amsmath, amssymb, newcent}
usepackage{tkz-tab}
usepackage{nccmath}

begin{document}

begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-mfrac{1}{4}$ , +/$g(1)$, -/$mvphantom{mfrac 14}$, +/$+infty$}
end{tikzpicture}

end{document}


enter image description here



Edit:
It seems I misundertood the requirement. I hope the following code is more like you want (same preamble):



begin{tikzpicture}
tkzTabInit{$x$ /1, $g'(x)$ /1, $g(x)$ /3.5}
{$-infty$,$a$,$1$,$3$, $+infty$}
tkzTabLine{,-,0,+,0,-,0,+ }
tkzTabVar{+/$+infty$, -/$m-mfrac{1}{4}$ , +/$g(1)$, -/raisebox{4ex}{$mvphantom{mfrac{1}4}$}, +/$+infty$}
end{tikzpicture}


enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited Dec 4 at 14:14

























answered Dec 4 at 11:55









Bernard

164k769192




164k769192












  • I see it seem was not changed. " m-1/4 " = " m "
    – chishimotoji
    Dec 4 at 12:02












  • Both ms are now at the same level, using a vphantom{mfrac{1}{4} for the rightmost m
    – Bernard
    Dec 4 at 12:40










  • You can edit your answer to show what you say. My english is not good.
    – chishimotoji
    Dec 4 at 12:58










  • I've added some explanations. Is that clearer?
    – Bernard
    Dec 4 at 13:28










  • smash[t]{vphantom{mfrac{1}{4}}} seems better. Or dfrac, of course, if dfrac is used in the other place.
    – egreg
    Dec 4 at 13:40




















  • I see it seem was not changed. " m-1/4 " = " m "
    – chishimotoji
    Dec 4 at 12:02












  • Both ms are now at the same level, using a vphantom{mfrac{1}{4} for the rightmost m
    – Bernard
    Dec 4 at 12:40










  • You can edit your answer to show what you say. My english is not good.
    – chishimotoji
    Dec 4 at 12:58










  • I've added some explanations. Is that clearer?
    – Bernard
    Dec 4 at 13:28










  • smash[t]{vphantom{mfrac{1}{4}}} seems better. Or dfrac, of course, if dfrac is used in the other place.
    – egreg
    Dec 4 at 13:40


















I see it seem was not changed. " m-1/4 " = " m "
– chishimotoji
Dec 4 at 12:02






I see it seem was not changed. " m-1/4 " = " m "
– chishimotoji
Dec 4 at 12:02














Both ms are now at the same level, using a vphantom{mfrac{1}{4} for the rightmost m
– Bernard
Dec 4 at 12:40




Both ms are now at the same level, using a vphantom{mfrac{1}{4} for the rightmost m
– Bernard
Dec 4 at 12:40












You can edit your answer to show what you say. My english is not good.
– chishimotoji
Dec 4 at 12:58




You can edit your answer to show what you say. My english is not good.
– chishimotoji
Dec 4 at 12:58












I've added some explanations. Is that clearer?
– Bernard
Dec 4 at 13:28




I've added some explanations. Is that clearer?
– Bernard
Dec 4 at 13:28












smash[t]{vphantom{mfrac{1}{4}}} seems better. Or dfrac, of course, if dfrac is used in the other place.
– egreg
Dec 4 at 13:40






smash[t]{vphantom{mfrac{1}{4}}} seems better. Or dfrac, of course, if dfrac is used in the other place.
– egreg
Dec 4 at 13:40












up vote
4
down vote













You can use the new tablvar package (documentation in French):



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb}
usepackage[tikz]{tablvar}

begin{document}

[
begin{tablvar}{4}
hline
x & -infty && a && 1 && 3 && +infty \
hline
g'(x) && - & 0 & + & 0 & - & 0 & + & \
hline
variations{
mil{g(x)} &
haut{+infty} &&
bas{m-dfrac{1}{4mathstrut}} &&
haut{g(1)} &&
bas{m} &&
haut{+infty}
}
hline
end{tablvar}
]

end{document}


Removing the tikz option makes the package rely on PSTricks.



enter image description here



If you want to easily move the m up (which I can't see the necessity of), raise it.



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb}
usepackage[tikz]{tablvar}

begin{document}

[
begin{tablvar}{4}
hline
x & -infty && a && 1 && 3 && +infty \
hline
g'(x) && - & 0 & + & 0 & - & 0 & + & \
hline
variations{
mil{g(x)} &
haut{+infty} &&
bas{m-dfrac{1}{4mathstrut}} &&
haut{g(1)} &&
bas{raisebox{2ex}{$mmathstrut$}} &&
haut{+infty}
}
hline
end{tablvar}
]

end{document}


enter image description here






share|improve this answer























  • Thank you but you should see edited question! My aim is to set "m" at that position.
    – chishimotoji
    Dec 4 at 14:02












  • @chishimotoji Added. Probably there are more features in the package documentation.
    – egreg
    Dec 4 at 14:04















up vote
4
down vote













You can use the new tablvar package (documentation in French):



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb}
usepackage[tikz]{tablvar}

begin{document}

[
begin{tablvar}{4}
hline
x & -infty && a && 1 && 3 && +infty \
hline
g'(x) && - & 0 & + & 0 & - & 0 & + & \
hline
variations{
mil{g(x)} &
haut{+infty} &&
bas{m-dfrac{1}{4mathstrut}} &&
haut{g(1)} &&
bas{m} &&
haut{+infty}
}
hline
end{tablvar}
]

end{document}


Removing the tikz option makes the package rely on PSTricks.



enter image description here



If you want to easily move the m up (which I can't see the necessity of), raise it.



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb}
usepackage[tikz]{tablvar}

begin{document}

[
begin{tablvar}{4}
hline
x & -infty && a && 1 && 3 && +infty \
hline
g'(x) && - & 0 & + & 0 & - & 0 & + & \
hline
variations{
mil{g(x)} &
haut{+infty} &&
bas{m-dfrac{1}{4mathstrut}} &&
haut{g(1)} &&
bas{raisebox{2ex}{$mmathstrut$}} &&
haut{+infty}
}
hline
end{tablvar}
]

end{document}


enter image description here






share|improve this answer























  • Thank you but you should see edited question! My aim is to set "m" at that position.
    – chishimotoji
    Dec 4 at 14:02












  • @chishimotoji Added. Probably there are more features in the package documentation.
    – egreg
    Dec 4 at 14:04













up vote
4
down vote










up vote
4
down vote









You can use the new tablvar package (documentation in French):



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb}
usepackage[tikz]{tablvar}

begin{document}

[
begin{tablvar}{4}
hline
x & -infty && a && 1 && 3 && +infty \
hline
g'(x) && - & 0 & + & 0 & - & 0 & + & \
hline
variations{
mil{g(x)} &
haut{+infty} &&
bas{m-dfrac{1}{4mathstrut}} &&
haut{g(1)} &&
bas{m} &&
haut{+infty}
}
hline
end{tablvar}
]

end{document}


Removing the tikz option makes the package rely on PSTricks.



enter image description here



If you want to easily move the m up (which I can't see the necessity of), raise it.



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb}
usepackage[tikz]{tablvar}

begin{document}

[
begin{tablvar}{4}
hline
x & -infty && a && 1 && 3 && +infty \
hline
g'(x) && - & 0 & + & 0 & - & 0 & + & \
hline
variations{
mil{g(x)} &
haut{+infty} &&
bas{m-dfrac{1}{4mathstrut}} &&
haut{g(1)} &&
bas{raisebox{2ex}{$mmathstrut$}} &&
haut{+infty}
}
hline
end{tablvar}
]

end{document}


enter image description here






share|improve this answer














You can use the new tablvar package (documentation in French):



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb}
usepackage[tikz]{tablvar}

begin{document}

[
begin{tablvar}{4}
hline
x & -infty && a && 1 && 3 && +infty \
hline
g'(x) && - & 0 & + & 0 & - & 0 & + & \
hline
variations{
mil{g(x)} &
haut{+infty} &&
bas{m-dfrac{1}{4mathstrut}} &&
haut{g(1)} &&
bas{m} &&
haut{+infty}
}
hline
end{tablvar}
]

end{document}


Removing the tikz option makes the package rely on PSTricks.



enter image description here



If you want to easily move the m up (which I can't see the necessity of), raise it.



documentclass[12pt,a4paper]{article}
usepackage{amsmath,amssymb}
usepackage[tikz]{tablvar}

begin{document}

[
begin{tablvar}{4}
hline
x & -infty && a && 1 && 3 && +infty \
hline
g'(x) && - & 0 & + & 0 & - & 0 & + & \
hline
variations{
mil{g(x)} &
haut{+infty} &&
bas{m-dfrac{1}{4mathstrut}} &&
haut{g(1)} &&
bas{raisebox{2ex}{$mmathstrut$}} &&
haut{+infty}
}
hline
end{tablvar}
]

end{document}


enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited Dec 4 at 14:04

























answered Dec 4 at 14:00









egreg

704k8618753154




704k8618753154












  • Thank you but you should see edited question! My aim is to set "m" at that position.
    – chishimotoji
    Dec 4 at 14:02












  • @chishimotoji Added. Probably there are more features in the package documentation.
    – egreg
    Dec 4 at 14:04


















  • Thank you but you should see edited question! My aim is to set "m" at that position.
    – chishimotoji
    Dec 4 at 14:02












  • @chishimotoji Added. Probably there are more features in the package documentation.
    – egreg
    Dec 4 at 14:04
















Thank you but you should see edited question! My aim is to set "m" at that position.
– chishimotoji
Dec 4 at 14:02






Thank you but you should see edited question! My aim is to set "m" at that position.
– chishimotoji
Dec 4 at 14:02














@chishimotoji Added. Probably there are more features in the package documentation.
– egreg
Dec 4 at 14:04




@chishimotoji Added. Probably there are more features in the package documentation.
– egreg
Dec 4 at 14:04










up vote
4
down vote













Out of topic!
For polynomials and rational functions with minimum one rational zero
we can do the factorization and finding the (only) rational roots with the help of
the xintexpr and polexpr packages. Then the table is build automatic.



So we can type for e.g. in the document



poldef zf1(x):=(-1/4)(x^2-4x+3)(x-2)^2(x^2+1)(x^2+2);
PolReduceCoeffs{zf1}
Given is the derivative:
[f^{prime}:t mapsto PolTypeset[t]{zf1} = typesetFactors[t]{zf1} ]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][t][zf1]


Here is the code for a full example.



documentclass[fleqn,svgnames,x11names,dvipsnames]{article}

usepackage[a4paper,margin=1.25cm]{geometry}
usepackage{amsmath,amssymb}
usepackage{xintexpr}
usepackage{polexpr}
usepackage{xfp,xparse,expl3,xstring}
usepackage{booktabs}
usepackage{siunitx}
sisetup{group-separator={,},output-decimal-marker={,},exponent-product=cdot,per-mode=fraction,product-units=single,
input-product=*,output-product=cdot,unit-mode=text,quotient-mode=fraction,locale=DE,range-phrase = { bis }}
usepackage{pstricks}

letfunkPolToExpr
letSTZeroLPolSturmIsolatedZeroLeft

NewExpandableDocumentCommand{XcalcR}{sO{8}m}{% calculates #3 and rounds to #2 decimals; non formating: for formated output use Xcalc not XcalcR
PolDecToString{xintREZ{xinttheiexpr[#2]reduce(#3)relax}}%
}

NewDocumentCommand{Xcalc}{t+stDsO{2}m}{% calculates #5, rounds to #4 decimals (trailing zeros are supressed) and typesets the number with num-macro formatting
IfBooleanT{#1}{xintifSgn{xinttheexpr #6relax}{}{+}{+}}% or as fraction, reduced or not reduced and with #3=D is a boolean in displaystyle
IfBooleanTF{#2}%
{IfBooleanT{#3}{displaystyle}%
IfBooleanTF{#4}%
{xintSignedFrac{xinttheexpr #6relax}}%
{xintSignedFrac{xinttheexpr reduce(#6)relax}}%
}%
{num{PolDecToString{xintREZ{xinttheiexpr[#5]reduce(#6)relax}}}}%
}


newcommand{NullStellen}[1]{%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{x_{##1} = Xcalc{PolSturmIsolatedZeroLeft{#1}{##1}}%
xintifForLast{}{; }}%
}


NewDocumentCommand{hackNst}{O{nt}D(){x}m}{%
xintifboolexpr{PolSturmNbOfIsolatedZeros{#3}=0}{}{%
xintiloop [1+1]
expandafterdefexpandaftertmpxintbracediloopindex
xintdefvar #2tmp = PolSturmIsolatedZeroLeft{#3}tmp;
xintdefvar #1tmp = PolSturmIsolatedZeroMultiplicity{#3}tmp;
ifnumxintiloopindex<numexprPolSturmNbOfIsolatedZeros{#3}relax
repeat
}%
}

NewDocumentCommand{GenFloatSturmZeros}{ssO{9}D(){x}m}{%
IfBooleanTF{#1}%
{%
PolToSturm{#5}{#5}%
PolSturmIsolateZeros**{#5}%
PolEnsureIntervalLengths{#5}{-#3}%
IfBooleanF{#2}{hackNst(#4){#5}}%
}%
{%
PolGenFloatVariant{#5}%
PolToSturm{#5}{#5}%
PolSturmIsolateZeros**{#5}%
PolEnsureIntervalLengths{#5}{-#3}%
}%
}


defsmstext{steigt}%
defsmftext{fällt}
defHPtext{Hochpkt.}
defTPtext{Tiefpkt.}
defSPtext{Terrassenpkt.}
defDiffRowtxt{f^{prime}}
deflueckColor#1{colorlet{lckColor}{#1}}
lueckColor{BrickRed}
defPoltxt{textcolor{lckColor}{Polstelle}}
defLueckentxt{textcolor{lckColor}{Def.-Lücke}}
defNotdeftxt{textcolor{lckColor}{diagup}}

NewDocumentCommand{VZTabelle}{sO{f}O{x}O{#21}!d()}{%
IfValueTF{#5}{%
PolGCD{#4}{#5}{commonfactorA}%
poldef erwzaehlerA(x) := (#4(x)#5(x))/(commonfactorA(x))^2 ;%
poldef gekuerzterNenner(x) := #5(x)/commonfactorA(x) ;%
PolGCD{erwzaehlerA}{commonfactorA}{commonfactorB}%
poldef commonfactorC(x) := commonfactorA(x)/commonfactorB(x) ;%
poldef erwzaehler(x) := erwzaehlerA(x)commonfactorC(x) ;%
}%
{%
poldef erwzaehler(x) := #4(x) ;%
poldef commonfactorC(x) := 1 ;%
}%
PolToSturm{erwzaehler}{erwzaehler}%
PolSturmIsolateZeros**{erwzaehler}%
PolEnsureIntervalLengths{erwzaehler}{-9}%
begin{tabular}{*{XcalcR{2+2*PolSturmNbOfIsolatedZeros{erwzaehler}}}{>{$}c<{$}}}
IfBooleanF{#1}{toprule}
IfValueTF{#5}{Firstrow{erwzaehler}{#3}{#5}}{Firstrow{erwzaehler}{#3}{1}}
IfValueTF{#5}{VZmakerows{erwzaehler}{#5}{#4}{#3}}{VZmakerows{erwzaehler}{1}{#4}{#3}}
IfValueTF{#5}{Diffrow{DiffRowtxt}{erwzaehler}{#3}{#5}}{Diffrow{DiffRowtxt}{erwzaehler}{#3}{1}}
IfValueTF{#5}{Graphrow{#2}{erwzaehler}{#5}}{Graphrow{#2}{erwzaehler}{1}}
IfBooleanF{#1}{ \ bottomrule}
end{tabular}%
}

defleadcoef#1{xintifboolexpr{PolLeadingCoeff{#1}=1}{}{Xcalc{PolLeadingCoeff{#1}}cdot}}

defnst#1#2{Xcalc*{STZeroL{#1}{#2}}}

defVZfktwertL#1#2{xintifSgn{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}-0.001relax)relax}{-}{0}{+}}

defVZfktwertR#1#2{xintifSgn{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}+0.001relax)relax}{-}{0}{+}}

defVZfktwert#1#2{xintifSgn{xinttheexpr #1(STZeroL{#1}{#2})relax}{-}{0}{+}}

deftabfactor#1#2#3#4{%
xintifboolexpr{STZeroL{#1}{#2}=0}%
{#4}%
{(#4Xcalc+*{-STZeroL{#1}{#2}})
xintifboolexpr{PolSturmIsolatedZeroMultiplicity{#1}{#2}=1}%
{%
xintifboolexpr{commonfactorC(STZeroL{#1}{#2})=0}%
{^{0}}%
{}%
}%
{%
xintifboolexpr{commonfactorC(STZeroL{#1}{#2})=0}%
{%
^{0}
}%
{%
^{PolSturmIsolatedZeroMultiplicity{#1}{#2}}
}%
}%
}%
}


defMonotonieL#1#2{xintifSgn{xinttheexpr #1(XcalcR{STZeroL{#1}{#2}-0.001})relax}{text{smftext}}{0}{text{smstext}}}

defMonotonieR#1#2{xintifSgn{xinttheexpr #1(XcalcR{STZeroL{#1}{#2}+0.001})relax}{text{smftext}}{0}{text{smstext}}}

defExtrema#1#2{xintifboolexpr{xinttheexpr (#1(XcalcR{STZeroL{#1}{#2}-0.001}))*(#1(XcalcR{STZeroL{#1}{#2}+0.001}))relax >0}%
{text{SPtext}}%
{%
xintifboolexpr{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}-0.001relax)relax>0}%
{text{HPtext}}%
{text{TPtext}}%
}%
}%


NewDocumentCommand{VZtabfac}{st{>}mmm}{%
IfBooleanTF{#1}%
{xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5})^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}}%
{%
IfBooleanTF{#2}%
{%
xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5}+0.001)^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}%
}%
{%
xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5}-0.001)^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}%
}%
}%
}


newcommand{VZmakerows}[4]{%
xintifboolexpr{PolLeadingCoeff{#1}<0}%
{%
xintSignedFrac{xintIrr{PolLeadingCoeff{#1}}} & -
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do { & - & - } \ midrule
}%
{}%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{tabfactor{#1}{##1}{#3}{#4} & VZtabfac{#1}{##1}{1}%
xintFor* ##2 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{ &
IfDecimal{#2}%
{VZtabfac*{#1}{##1}{##2}}%
{%
xintifboolexpr{xinttheexpr #2(STZeroL{#1}{##2})relax = 0}%
{Notdeftxt}
{VZtabfac*{#1}{##1}{##2}}%
}%
& VZtabfac>{#1}{##1}{##2}
}
\ midrule
}
}


newcommand{Firstrow}[3]{%
#2 & -infty<#2<nst{#1}{1} & IfDecimal{#3}{#2=nst{#1}{1}}%
{xintifboolexpr{xinttheexpr #3(STZeroL{#1}{1})relax = 0 }%
{textcolor{lckColor}{#2=nst{#1}{1}}}%
{#2=nst{#1}{1}}%
}%
xintifboolexpr{PolSturmNbOfIsolatedZeros{#1}>1}{%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}-1}}
do
{%
& nst{#1}{xinttheexpr ##1relax}<#2<nst{#1}{xinttheexpr ##1+1relax} &
IfDecimal{#3}%
{#2=nst{#1}{xinttheexpr ##1+1relax}}%
{xintifboolexpr{xinttheexpr #3(STZeroL{#1}{xinttheexpr ##1+1relax})relax = 0 }%
{textcolor{lckColor}{#2=nst{#1}{xinttheexpr ##1+1relax}}}%
{#2=nst{#1}{xinttheexpr ##1+1relax}}%
}%
}%
}%
{}%
& nst{#1}{PolSturmNbOfIsolatedZeros{#1}}<#2<+infty\ midrule
}


NewDocumentCommand{Diffrow}{mmmm}{%
#1(#3)
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#2}}}
do
{& VZfktwertL{#2}{##1} &
IfDecimal{#4}%
{VZfktwert{#2}{##1}}%
{%
xintifboolexpr{xinttheexpr #4(STZeroL{#2}{##1})relax = 0}%
{Notdeftxt}
{VZfktwert{#2}{##1}}%
}%
}%
& VZfktwertR{#2}{PolSturmNbOfIsolatedZeros{#2}} \ midrule
}


newcommand{Graphrow}[3]{%
text{G}_{#1}
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#2}}}
do
{& MonotonieL{#2}{##1} & IfDecimal{#3}{Extrema{#2}{##1}}{%
xintifboolexpr{xinttheexpr #3(STZeroL{#2}{##1})relax = 0}%
{%
xintifboolexpr{xinttheexpr gekuerzterNenner(STZeroL{#2}{##1})relax =0}%
{text{Poltxt}}
{text{Lueckentxt}}
}%
{Extrema{#2}{##1}}%
}%
}%
& MonotonieR{#2}{PolSturmNbOfIsolatedZeros{#2}}
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin of code for factorization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Counter for LOOP over the roots of f
newcountzeroCount
% Set counter to 1
zeroCount=1

% Proof if a root is "0" then only write x and not (x-0) ...
% factor the roots like (x-x_1) if x_1>0, (x+x_1) if x_1<0
newcommand{factorZeros}[1]{%
xintifZero{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}%
{varname}
{left(varnamexintiiifSgn{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}{+}{-}{-}
xintSignedFrac{xintIrr{xintAbs{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}}}right)
}
}

% Don't write multiplicity of a root in case it is =1
newcommand{ignoreMultiplicityOne}[1]{%
xintifOne{PolSturmIsolatedZeroMultiplicity{#1}{thezeroCount}}{}{PolSturmIsolatedZeroMultiplicity{#1}{thezeroCount}}
}

% Hide leading coefficient if leading coefficient is + or - 1.
newcommand{hideLeadingCoeff}[1]{%
xintifOne{xintAbs{PolLeadingCoeff{#1}}}%
{xintiiifSgn{PolLeadingCoeff{#1}}{-}{}{}}
{xintSignedFrac{xintIrr{PolLeadingCoeff{#1}}}}
}

% Typeset polynomial as factors of its rational roots: f(x)=a_n(x-x_1)(x-x_2)...(x-x_n)(quotient function)
newcommand{typesetFactors}[2][x]{%
defvarname{#1}%
% #1 = function
PolToSturm{#2}{#2}%
PolSturmIsolateZeros**{#2}%
xintifboolexpr{PolDegree{#2}<2}{xintifboolexpr{PolDegree{#2}<1}{PolTypeset[varname]{#2}}{left(PolTypeset[varname]{#2}right)}}{%
xintifboolexpr{PolDegree{#2}=PolDegree{#2_norr}}{PolTypeset[varname]{#2}}{%
poldef #2_rat(x) := #2(x)/#2_norr(x);
poldef #2_norr_VZ(x) := xintSgn{PolLeadingCoeff{#2_norr}}#2_norr(x);
PolToSturm{#2_rat}{#2_rat}%
PolSturmIsolateZeros**{#2_rat}%
%
hideLeadingCoeff{#2}%
% Loop over all rational zeros of the function f = #2 ; #2_rat is the part with only rational zeros
% #2_rat is defined as #2(x)/#2_norr(x), and #2_norr is the part of #2 with no rational roots (square-free version is #2_irr )
loop
factorZeros{#2_rat}^{ignoreMultiplicityOne{#2_rat}}%
advance zeroCount 1
ifnum zeroCount<xinttheexprPolSturmNbOfIsolatedZeros{#2_rat}+1relax
repeat
xintifZero{PolDegree{#2_norr}}%
{}%
{left(PolTypeset[varname]{#2_norr_VZ}right)}%
}}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% End of code for factorization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

defsmstext{$nearrow$}
defsmftext{$searrow$}
defHPtext{H}
defTPtext{T}
defSPtext{Ter.}
defDiffRowtxt{f^{prime}}
defPoltxt{textcolor{lckColor}{Pol}}
defLueckentxt{textcolor{lckColor}{Loch}}


begin{document}

poldef zf1(x):=(-1/4)(x^2-4x+3)(x-2)^2(x^2+1)(x^2+2);
PolReduceCoeffs{zf1}
Given is the derivative:
[f^{prime}:t mapsto PolTypeset[t]{zf1} = typesetFactors[t]{zf1} ]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][t][zf1]
bigskip

poldef zf1(x):=(x^2-4x+3)*(x-2);
PolReduceCoeffs{zf1}
poldef nf1(x):=(x^2+1)(x-2)^2;
PolReduceCoeffs{nf1}
Given is the derivative:
[f^{prime}:x mapsto frac{PolTypeset{zf1}}{PolTypeset{nf1}} = frac{typesetFactors{zf1}}{typesetFactors{nf1}}]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][x][zf1](nf1)

end{document}


enter image description here






share|improve this answer























  • (+1) Thank you for your problem expansion. But truly I don't understand anything. hihi :-))
    – chishimotoji
    Dec 6 at 8:32










  • very impressive but you seem to be using some development version of polexpr which finds rational roots as current version 0.6 does not have the double starred PolSturmIsolateZeros**.... I am very jealous!
    – jfbu
    Dec 6 at 9:51










  • @jfbu yes, you are right. I actually forgot that.
    – Thomas
    Dec 6 at 11:17










  • I will make my best to ping the polexpr author to make soon a release of dev version....
    – jfbu
    Dec 6 at 13:41










  • The code has been adapted to the new syntax of polexpr 0.7, which will appear shortly on ctan. Many thanks to the diligent author of polexpr.
    – Thomas
    2 days ago















up vote
4
down vote













Out of topic!
For polynomials and rational functions with minimum one rational zero
we can do the factorization and finding the (only) rational roots with the help of
the xintexpr and polexpr packages. Then the table is build automatic.



So we can type for e.g. in the document



poldef zf1(x):=(-1/4)(x^2-4x+3)(x-2)^2(x^2+1)(x^2+2);
PolReduceCoeffs{zf1}
Given is the derivative:
[f^{prime}:t mapsto PolTypeset[t]{zf1} = typesetFactors[t]{zf1} ]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][t][zf1]


Here is the code for a full example.



documentclass[fleqn,svgnames,x11names,dvipsnames]{article}

usepackage[a4paper,margin=1.25cm]{geometry}
usepackage{amsmath,amssymb}
usepackage{xintexpr}
usepackage{polexpr}
usepackage{xfp,xparse,expl3,xstring}
usepackage{booktabs}
usepackage{siunitx}
sisetup{group-separator={,},output-decimal-marker={,},exponent-product=cdot,per-mode=fraction,product-units=single,
input-product=*,output-product=cdot,unit-mode=text,quotient-mode=fraction,locale=DE,range-phrase = { bis }}
usepackage{pstricks}

letfunkPolToExpr
letSTZeroLPolSturmIsolatedZeroLeft

NewExpandableDocumentCommand{XcalcR}{sO{8}m}{% calculates #3 and rounds to #2 decimals; non formating: for formated output use Xcalc not XcalcR
PolDecToString{xintREZ{xinttheiexpr[#2]reduce(#3)relax}}%
}

NewDocumentCommand{Xcalc}{t+stDsO{2}m}{% calculates #5, rounds to #4 decimals (trailing zeros are supressed) and typesets the number with num-macro formatting
IfBooleanT{#1}{xintifSgn{xinttheexpr #6relax}{}{+}{+}}% or as fraction, reduced or not reduced and with #3=D is a boolean in displaystyle
IfBooleanTF{#2}%
{IfBooleanT{#3}{displaystyle}%
IfBooleanTF{#4}%
{xintSignedFrac{xinttheexpr #6relax}}%
{xintSignedFrac{xinttheexpr reduce(#6)relax}}%
}%
{num{PolDecToString{xintREZ{xinttheiexpr[#5]reduce(#6)relax}}}}%
}


newcommand{NullStellen}[1]{%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{x_{##1} = Xcalc{PolSturmIsolatedZeroLeft{#1}{##1}}%
xintifForLast{}{; }}%
}


NewDocumentCommand{hackNst}{O{nt}D(){x}m}{%
xintifboolexpr{PolSturmNbOfIsolatedZeros{#3}=0}{}{%
xintiloop [1+1]
expandafterdefexpandaftertmpxintbracediloopindex
xintdefvar #2tmp = PolSturmIsolatedZeroLeft{#3}tmp;
xintdefvar #1tmp = PolSturmIsolatedZeroMultiplicity{#3}tmp;
ifnumxintiloopindex<numexprPolSturmNbOfIsolatedZeros{#3}relax
repeat
}%
}

NewDocumentCommand{GenFloatSturmZeros}{ssO{9}D(){x}m}{%
IfBooleanTF{#1}%
{%
PolToSturm{#5}{#5}%
PolSturmIsolateZeros**{#5}%
PolEnsureIntervalLengths{#5}{-#3}%
IfBooleanF{#2}{hackNst(#4){#5}}%
}%
{%
PolGenFloatVariant{#5}%
PolToSturm{#5}{#5}%
PolSturmIsolateZeros**{#5}%
PolEnsureIntervalLengths{#5}{-#3}%
}%
}


defsmstext{steigt}%
defsmftext{fällt}
defHPtext{Hochpkt.}
defTPtext{Tiefpkt.}
defSPtext{Terrassenpkt.}
defDiffRowtxt{f^{prime}}
deflueckColor#1{colorlet{lckColor}{#1}}
lueckColor{BrickRed}
defPoltxt{textcolor{lckColor}{Polstelle}}
defLueckentxt{textcolor{lckColor}{Def.-Lücke}}
defNotdeftxt{textcolor{lckColor}{diagup}}

NewDocumentCommand{VZTabelle}{sO{f}O{x}O{#21}!d()}{%
IfValueTF{#5}{%
PolGCD{#4}{#5}{commonfactorA}%
poldef erwzaehlerA(x) := (#4(x)#5(x))/(commonfactorA(x))^2 ;%
poldef gekuerzterNenner(x) := #5(x)/commonfactorA(x) ;%
PolGCD{erwzaehlerA}{commonfactorA}{commonfactorB}%
poldef commonfactorC(x) := commonfactorA(x)/commonfactorB(x) ;%
poldef erwzaehler(x) := erwzaehlerA(x)commonfactorC(x) ;%
}%
{%
poldef erwzaehler(x) := #4(x) ;%
poldef commonfactorC(x) := 1 ;%
}%
PolToSturm{erwzaehler}{erwzaehler}%
PolSturmIsolateZeros**{erwzaehler}%
PolEnsureIntervalLengths{erwzaehler}{-9}%
begin{tabular}{*{XcalcR{2+2*PolSturmNbOfIsolatedZeros{erwzaehler}}}{>{$}c<{$}}}
IfBooleanF{#1}{toprule}
IfValueTF{#5}{Firstrow{erwzaehler}{#3}{#5}}{Firstrow{erwzaehler}{#3}{1}}
IfValueTF{#5}{VZmakerows{erwzaehler}{#5}{#4}{#3}}{VZmakerows{erwzaehler}{1}{#4}{#3}}
IfValueTF{#5}{Diffrow{DiffRowtxt}{erwzaehler}{#3}{#5}}{Diffrow{DiffRowtxt}{erwzaehler}{#3}{1}}
IfValueTF{#5}{Graphrow{#2}{erwzaehler}{#5}}{Graphrow{#2}{erwzaehler}{1}}
IfBooleanF{#1}{ \ bottomrule}
end{tabular}%
}

defleadcoef#1{xintifboolexpr{PolLeadingCoeff{#1}=1}{}{Xcalc{PolLeadingCoeff{#1}}cdot}}

defnst#1#2{Xcalc*{STZeroL{#1}{#2}}}

defVZfktwertL#1#2{xintifSgn{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}-0.001relax)relax}{-}{0}{+}}

defVZfktwertR#1#2{xintifSgn{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}+0.001relax)relax}{-}{0}{+}}

defVZfktwert#1#2{xintifSgn{xinttheexpr #1(STZeroL{#1}{#2})relax}{-}{0}{+}}

deftabfactor#1#2#3#4{%
xintifboolexpr{STZeroL{#1}{#2}=0}%
{#4}%
{(#4Xcalc+*{-STZeroL{#1}{#2}})
xintifboolexpr{PolSturmIsolatedZeroMultiplicity{#1}{#2}=1}%
{%
xintifboolexpr{commonfactorC(STZeroL{#1}{#2})=0}%
{^{0}}%
{}%
}%
{%
xintifboolexpr{commonfactorC(STZeroL{#1}{#2})=0}%
{%
^{0}
}%
{%
^{PolSturmIsolatedZeroMultiplicity{#1}{#2}}
}%
}%
}%
}


defMonotonieL#1#2{xintifSgn{xinttheexpr #1(XcalcR{STZeroL{#1}{#2}-0.001})relax}{text{smftext}}{0}{text{smstext}}}

defMonotonieR#1#2{xintifSgn{xinttheexpr #1(XcalcR{STZeroL{#1}{#2}+0.001})relax}{text{smftext}}{0}{text{smstext}}}

defExtrema#1#2{xintifboolexpr{xinttheexpr (#1(XcalcR{STZeroL{#1}{#2}-0.001}))*(#1(XcalcR{STZeroL{#1}{#2}+0.001}))relax >0}%
{text{SPtext}}%
{%
xintifboolexpr{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}-0.001relax)relax>0}%
{text{HPtext}}%
{text{TPtext}}%
}%
}%


NewDocumentCommand{VZtabfac}{st{>}mmm}{%
IfBooleanTF{#1}%
{xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5})^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}}%
{%
IfBooleanTF{#2}%
{%
xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5}+0.001)^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}%
}%
{%
xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5}-0.001)^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}%
}%
}%
}


newcommand{VZmakerows}[4]{%
xintifboolexpr{PolLeadingCoeff{#1}<0}%
{%
xintSignedFrac{xintIrr{PolLeadingCoeff{#1}}} & -
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do { & - & - } \ midrule
}%
{}%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{tabfactor{#1}{##1}{#3}{#4} & VZtabfac{#1}{##1}{1}%
xintFor* ##2 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{ &
IfDecimal{#2}%
{VZtabfac*{#1}{##1}{##2}}%
{%
xintifboolexpr{xinttheexpr #2(STZeroL{#1}{##2})relax = 0}%
{Notdeftxt}
{VZtabfac*{#1}{##1}{##2}}%
}%
& VZtabfac>{#1}{##1}{##2}
}
\ midrule
}
}


newcommand{Firstrow}[3]{%
#2 & -infty<#2<nst{#1}{1} & IfDecimal{#3}{#2=nst{#1}{1}}%
{xintifboolexpr{xinttheexpr #3(STZeroL{#1}{1})relax = 0 }%
{textcolor{lckColor}{#2=nst{#1}{1}}}%
{#2=nst{#1}{1}}%
}%
xintifboolexpr{PolSturmNbOfIsolatedZeros{#1}>1}{%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}-1}}
do
{%
& nst{#1}{xinttheexpr ##1relax}<#2<nst{#1}{xinttheexpr ##1+1relax} &
IfDecimal{#3}%
{#2=nst{#1}{xinttheexpr ##1+1relax}}%
{xintifboolexpr{xinttheexpr #3(STZeroL{#1}{xinttheexpr ##1+1relax})relax = 0 }%
{textcolor{lckColor}{#2=nst{#1}{xinttheexpr ##1+1relax}}}%
{#2=nst{#1}{xinttheexpr ##1+1relax}}%
}%
}%
}%
{}%
& nst{#1}{PolSturmNbOfIsolatedZeros{#1}}<#2<+infty\ midrule
}


NewDocumentCommand{Diffrow}{mmmm}{%
#1(#3)
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#2}}}
do
{& VZfktwertL{#2}{##1} &
IfDecimal{#4}%
{VZfktwert{#2}{##1}}%
{%
xintifboolexpr{xinttheexpr #4(STZeroL{#2}{##1})relax = 0}%
{Notdeftxt}
{VZfktwert{#2}{##1}}%
}%
}%
& VZfktwertR{#2}{PolSturmNbOfIsolatedZeros{#2}} \ midrule
}


newcommand{Graphrow}[3]{%
text{G}_{#1}
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#2}}}
do
{& MonotonieL{#2}{##1} & IfDecimal{#3}{Extrema{#2}{##1}}{%
xintifboolexpr{xinttheexpr #3(STZeroL{#2}{##1})relax = 0}%
{%
xintifboolexpr{xinttheexpr gekuerzterNenner(STZeroL{#2}{##1})relax =0}%
{text{Poltxt}}
{text{Lueckentxt}}
}%
{Extrema{#2}{##1}}%
}%
}%
& MonotonieR{#2}{PolSturmNbOfIsolatedZeros{#2}}
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin of code for factorization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Counter for LOOP over the roots of f
newcountzeroCount
% Set counter to 1
zeroCount=1

% Proof if a root is "0" then only write x and not (x-0) ...
% factor the roots like (x-x_1) if x_1>0, (x+x_1) if x_1<0
newcommand{factorZeros}[1]{%
xintifZero{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}%
{varname}
{left(varnamexintiiifSgn{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}{+}{-}{-}
xintSignedFrac{xintIrr{xintAbs{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}}}right)
}
}

% Don't write multiplicity of a root in case it is =1
newcommand{ignoreMultiplicityOne}[1]{%
xintifOne{PolSturmIsolatedZeroMultiplicity{#1}{thezeroCount}}{}{PolSturmIsolatedZeroMultiplicity{#1}{thezeroCount}}
}

% Hide leading coefficient if leading coefficient is + or - 1.
newcommand{hideLeadingCoeff}[1]{%
xintifOne{xintAbs{PolLeadingCoeff{#1}}}%
{xintiiifSgn{PolLeadingCoeff{#1}}{-}{}{}}
{xintSignedFrac{xintIrr{PolLeadingCoeff{#1}}}}
}

% Typeset polynomial as factors of its rational roots: f(x)=a_n(x-x_1)(x-x_2)...(x-x_n)(quotient function)
newcommand{typesetFactors}[2][x]{%
defvarname{#1}%
% #1 = function
PolToSturm{#2}{#2}%
PolSturmIsolateZeros**{#2}%
xintifboolexpr{PolDegree{#2}<2}{xintifboolexpr{PolDegree{#2}<1}{PolTypeset[varname]{#2}}{left(PolTypeset[varname]{#2}right)}}{%
xintifboolexpr{PolDegree{#2}=PolDegree{#2_norr}}{PolTypeset[varname]{#2}}{%
poldef #2_rat(x) := #2(x)/#2_norr(x);
poldef #2_norr_VZ(x) := xintSgn{PolLeadingCoeff{#2_norr}}#2_norr(x);
PolToSturm{#2_rat}{#2_rat}%
PolSturmIsolateZeros**{#2_rat}%
%
hideLeadingCoeff{#2}%
% Loop over all rational zeros of the function f = #2 ; #2_rat is the part with only rational zeros
% #2_rat is defined as #2(x)/#2_norr(x), and #2_norr is the part of #2 with no rational roots (square-free version is #2_irr )
loop
factorZeros{#2_rat}^{ignoreMultiplicityOne{#2_rat}}%
advance zeroCount 1
ifnum zeroCount<xinttheexprPolSturmNbOfIsolatedZeros{#2_rat}+1relax
repeat
xintifZero{PolDegree{#2_norr}}%
{}%
{left(PolTypeset[varname]{#2_norr_VZ}right)}%
}}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% End of code for factorization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

defsmstext{$nearrow$}
defsmftext{$searrow$}
defHPtext{H}
defTPtext{T}
defSPtext{Ter.}
defDiffRowtxt{f^{prime}}
defPoltxt{textcolor{lckColor}{Pol}}
defLueckentxt{textcolor{lckColor}{Loch}}


begin{document}

poldef zf1(x):=(-1/4)(x^2-4x+3)(x-2)^2(x^2+1)(x^2+2);
PolReduceCoeffs{zf1}
Given is the derivative:
[f^{prime}:t mapsto PolTypeset[t]{zf1} = typesetFactors[t]{zf1} ]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][t][zf1]
bigskip

poldef zf1(x):=(x^2-4x+3)*(x-2);
PolReduceCoeffs{zf1}
poldef nf1(x):=(x^2+1)(x-2)^2;
PolReduceCoeffs{nf1}
Given is the derivative:
[f^{prime}:x mapsto frac{PolTypeset{zf1}}{PolTypeset{nf1}} = frac{typesetFactors{zf1}}{typesetFactors{nf1}}]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][x][zf1](nf1)

end{document}


enter image description here






share|improve this answer























  • (+1) Thank you for your problem expansion. But truly I don't understand anything. hihi :-))
    – chishimotoji
    Dec 6 at 8:32










  • very impressive but you seem to be using some development version of polexpr which finds rational roots as current version 0.6 does not have the double starred PolSturmIsolateZeros**.... I am very jealous!
    – jfbu
    Dec 6 at 9:51










  • @jfbu yes, you are right. I actually forgot that.
    – Thomas
    Dec 6 at 11:17










  • I will make my best to ping the polexpr author to make soon a release of dev version....
    – jfbu
    Dec 6 at 13:41










  • The code has been adapted to the new syntax of polexpr 0.7, which will appear shortly on ctan. Many thanks to the diligent author of polexpr.
    – Thomas
    2 days ago













up vote
4
down vote










up vote
4
down vote









Out of topic!
For polynomials and rational functions with minimum one rational zero
we can do the factorization and finding the (only) rational roots with the help of
the xintexpr and polexpr packages. Then the table is build automatic.



So we can type for e.g. in the document



poldef zf1(x):=(-1/4)(x^2-4x+3)(x-2)^2(x^2+1)(x^2+2);
PolReduceCoeffs{zf1}
Given is the derivative:
[f^{prime}:t mapsto PolTypeset[t]{zf1} = typesetFactors[t]{zf1} ]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][t][zf1]


Here is the code for a full example.



documentclass[fleqn,svgnames,x11names,dvipsnames]{article}

usepackage[a4paper,margin=1.25cm]{geometry}
usepackage{amsmath,amssymb}
usepackage{xintexpr}
usepackage{polexpr}
usepackage{xfp,xparse,expl3,xstring}
usepackage{booktabs}
usepackage{siunitx}
sisetup{group-separator={,},output-decimal-marker={,},exponent-product=cdot,per-mode=fraction,product-units=single,
input-product=*,output-product=cdot,unit-mode=text,quotient-mode=fraction,locale=DE,range-phrase = { bis }}
usepackage{pstricks}

letfunkPolToExpr
letSTZeroLPolSturmIsolatedZeroLeft

NewExpandableDocumentCommand{XcalcR}{sO{8}m}{% calculates #3 and rounds to #2 decimals; non formating: for formated output use Xcalc not XcalcR
PolDecToString{xintREZ{xinttheiexpr[#2]reduce(#3)relax}}%
}

NewDocumentCommand{Xcalc}{t+stDsO{2}m}{% calculates #5, rounds to #4 decimals (trailing zeros are supressed) and typesets the number with num-macro formatting
IfBooleanT{#1}{xintifSgn{xinttheexpr #6relax}{}{+}{+}}% or as fraction, reduced or not reduced and with #3=D is a boolean in displaystyle
IfBooleanTF{#2}%
{IfBooleanT{#3}{displaystyle}%
IfBooleanTF{#4}%
{xintSignedFrac{xinttheexpr #6relax}}%
{xintSignedFrac{xinttheexpr reduce(#6)relax}}%
}%
{num{PolDecToString{xintREZ{xinttheiexpr[#5]reduce(#6)relax}}}}%
}


newcommand{NullStellen}[1]{%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{x_{##1} = Xcalc{PolSturmIsolatedZeroLeft{#1}{##1}}%
xintifForLast{}{; }}%
}


NewDocumentCommand{hackNst}{O{nt}D(){x}m}{%
xintifboolexpr{PolSturmNbOfIsolatedZeros{#3}=0}{}{%
xintiloop [1+1]
expandafterdefexpandaftertmpxintbracediloopindex
xintdefvar #2tmp = PolSturmIsolatedZeroLeft{#3}tmp;
xintdefvar #1tmp = PolSturmIsolatedZeroMultiplicity{#3}tmp;
ifnumxintiloopindex<numexprPolSturmNbOfIsolatedZeros{#3}relax
repeat
}%
}

NewDocumentCommand{GenFloatSturmZeros}{ssO{9}D(){x}m}{%
IfBooleanTF{#1}%
{%
PolToSturm{#5}{#5}%
PolSturmIsolateZeros**{#5}%
PolEnsureIntervalLengths{#5}{-#3}%
IfBooleanF{#2}{hackNst(#4){#5}}%
}%
{%
PolGenFloatVariant{#5}%
PolToSturm{#5}{#5}%
PolSturmIsolateZeros**{#5}%
PolEnsureIntervalLengths{#5}{-#3}%
}%
}


defsmstext{steigt}%
defsmftext{fällt}
defHPtext{Hochpkt.}
defTPtext{Tiefpkt.}
defSPtext{Terrassenpkt.}
defDiffRowtxt{f^{prime}}
deflueckColor#1{colorlet{lckColor}{#1}}
lueckColor{BrickRed}
defPoltxt{textcolor{lckColor}{Polstelle}}
defLueckentxt{textcolor{lckColor}{Def.-Lücke}}
defNotdeftxt{textcolor{lckColor}{diagup}}

NewDocumentCommand{VZTabelle}{sO{f}O{x}O{#21}!d()}{%
IfValueTF{#5}{%
PolGCD{#4}{#5}{commonfactorA}%
poldef erwzaehlerA(x) := (#4(x)#5(x))/(commonfactorA(x))^2 ;%
poldef gekuerzterNenner(x) := #5(x)/commonfactorA(x) ;%
PolGCD{erwzaehlerA}{commonfactorA}{commonfactorB}%
poldef commonfactorC(x) := commonfactorA(x)/commonfactorB(x) ;%
poldef erwzaehler(x) := erwzaehlerA(x)commonfactorC(x) ;%
}%
{%
poldef erwzaehler(x) := #4(x) ;%
poldef commonfactorC(x) := 1 ;%
}%
PolToSturm{erwzaehler}{erwzaehler}%
PolSturmIsolateZeros**{erwzaehler}%
PolEnsureIntervalLengths{erwzaehler}{-9}%
begin{tabular}{*{XcalcR{2+2*PolSturmNbOfIsolatedZeros{erwzaehler}}}{>{$}c<{$}}}
IfBooleanF{#1}{toprule}
IfValueTF{#5}{Firstrow{erwzaehler}{#3}{#5}}{Firstrow{erwzaehler}{#3}{1}}
IfValueTF{#5}{VZmakerows{erwzaehler}{#5}{#4}{#3}}{VZmakerows{erwzaehler}{1}{#4}{#3}}
IfValueTF{#5}{Diffrow{DiffRowtxt}{erwzaehler}{#3}{#5}}{Diffrow{DiffRowtxt}{erwzaehler}{#3}{1}}
IfValueTF{#5}{Graphrow{#2}{erwzaehler}{#5}}{Graphrow{#2}{erwzaehler}{1}}
IfBooleanF{#1}{ \ bottomrule}
end{tabular}%
}

defleadcoef#1{xintifboolexpr{PolLeadingCoeff{#1}=1}{}{Xcalc{PolLeadingCoeff{#1}}cdot}}

defnst#1#2{Xcalc*{STZeroL{#1}{#2}}}

defVZfktwertL#1#2{xintifSgn{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}-0.001relax)relax}{-}{0}{+}}

defVZfktwertR#1#2{xintifSgn{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}+0.001relax)relax}{-}{0}{+}}

defVZfktwert#1#2{xintifSgn{xinttheexpr #1(STZeroL{#1}{#2})relax}{-}{0}{+}}

deftabfactor#1#2#3#4{%
xintifboolexpr{STZeroL{#1}{#2}=0}%
{#4}%
{(#4Xcalc+*{-STZeroL{#1}{#2}})
xintifboolexpr{PolSturmIsolatedZeroMultiplicity{#1}{#2}=1}%
{%
xintifboolexpr{commonfactorC(STZeroL{#1}{#2})=0}%
{^{0}}%
{}%
}%
{%
xintifboolexpr{commonfactorC(STZeroL{#1}{#2})=0}%
{%
^{0}
}%
{%
^{PolSturmIsolatedZeroMultiplicity{#1}{#2}}
}%
}%
}%
}


defMonotonieL#1#2{xintifSgn{xinttheexpr #1(XcalcR{STZeroL{#1}{#2}-0.001})relax}{text{smftext}}{0}{text{smstext}}}

defMonotonieR#1#2{xintifSgn{xinttheexpr #1(XcalcR{STZeroL{#1}{#2}+0.001})relax}{text{smftext}}{0}{text{smstext}}}

defExtrema#1#2{xintifboolexpr{xinttheexpr (#1(XcalcR{STZeroL{#1}{#2}-0.001}))*(#1(XcalcR{STZeroL{#1}{#2}+0.001}))relax >0}%
{text{SPtext}}%
{%
xintifboolexpr{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}-0.001relax)relax>0}%
{text{HPtext}}%
{text{TPtext}}%
}%
}%


NewDocumentCommand{VZtabfac}{st{>}mmm}{%
IfBooleanTF{#1}%
{xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5})^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}}%
{%
IfBooleanTF{#2}%
{%
xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5}+0.001)^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}%
}%
{%
xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5}-0.001)^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}%
}%
}%
}


newcommand{VZmakerows}[4]{%
xintifboolexpr{PolLeadingCoeff{#1}<0}%
{%
xintSignedFrac{xintIrr{PolLeadingCoeff{#1}}} & -
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do { & - & - } \ midrule
}%
{}%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{tabfactor{#1}{##1}{#3}{#4} & VZtabfac{#1}{##1}{1}%
xintFor* ##2 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{ &
IfDecimal{#2}%
{VZtabfac*{#1}{##1}{##2}}%
{%
xintifboolexpr{xinttheexpr #2(STZeroL{#1}{##2})relax = 0}%
{Notdeftxt}
{VZtabfac*{#1}{##1}{##2}}%
}%
& VZtabfac>{#1}{##1}{##2}
}
\ midrule
}
}


newcommand{Firstrow}[3]{%
#2 & -infty<#2<nst{#1}{1} & IfDecimal{#3}{#2=nst{#1}{1}}%
{xintifboolexpr{xinttheexpr #3(STZeroL{#1}{1})relax = 0 }%
{textcolor{lckColor}{#2=nst{#1}{1}}}%
{#2=nst{#1}{1}}%
}%
xintifboolexpr{PolSturmNbOfIsolatedZeros{#1}>1}{%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}-1}}
do
{%
& nst{#1}{xinttheexpr ##1relax}<#2<nst{#1}{xinttheexpr ##1+1relax} &
IfDecimal{#3}%
{#2=nst{#1}{xinttheexpr ##1+1relax}}%
{xintifboolexpr{xinttheexpr #3(STZeroL{#1}{xinttheexpr ##1+1relax})relax = 0 }%
{textcolor{lckColor}{#2=nst{#1}{xinttheexpr ##1+1relax}}}%
{#2=nst{#1}{xinttheexpr ##1+1relax}}%
}%
}%
}%
{}%
& nst{#1}{PolSturmNbOfIsolatedZeros{#1}}<#2<+infty\ midrule
}


NewDocumentCommand{Diffrow}{mmmm}{%
#1(#3)
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#2}}}
do
{& VZfktwertL{#2}{##1} &
IfDecimal{#4}%
{VZfktwert{#2}{##1}}%
{%
xintifboolexpr{xinttheexpr #4(STZeroL{#2}{##1})relax = 0}%
{Notdeftxt}
{VZfktwert{#2}{##1}}%
}%
}%
& VZfktwertR{#2}{PolSturmNbOfIsolatedZeros{#2}} \ midrule
}


newcommand{Graphrow}[3]{%
text{G}_{#1}
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#2}}}
do
{& MonotonieL{#2}{##1} & IfDecimal{#3}{Extrema{#2}{##1}}{%
xintifboolexpr{xinttheexpr #3(STZeroL{#2}{##1})relax = 0}%
{%
xintifboolexpr{xinttheexpr gekuerzterNenner(STZeroL{#2}{##1})relax =0}%
{text{Poltxt}}
{text{Lueckentxt}}
}%
{Extrema{#2}{##1}}%
}%
}%
& MonotonieR{#2}{PolSturmNbOfIsolatedZeros{#2}}
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin of code for factorization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Counter for LOOP over the roots of f
newcountzeroCount
% Set counter to 1
zeroCount=1

% Proof if a root is "0" then only write x and not (x-0) ...
% factor the roots like (x-x_1) if x_1>0, (x+x_1) if x_1<0
newcommand{factorZeros}[1]{%
xintifZero{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}%
{varname}
{left(varnamexintiiifSgn{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}{+}{-}{-}
xintSignedFrac{xintIrr{xintAbs{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}}}right)
}
}

% Don't write multiplicity of a root in case it is =1
newcommand{ignoreMultiplicityOne}[1]{%
xintifOne{PolSturmIsolatedZeroMultiplicity{#1}{thezeroCount}}{}{PolSturmIsolatedZeroMultiplicity{#1}{thezeroCount}}
}

% Hide leading coefficient if leading coefficient is + or - 1.
newcommand{hideLeadingCoeff}[1]{%
xintifOne{xintAbs{PolLeadingCoeff{#1}}}%
{xintiiifSgn{PolLeadingCoeff{#1}}{-}{}{}}
{xintSignedFrac{xintIrr{PolLeadingCoeff{#1}}}}
}

% Typeset polynomial as factors of its rational roots: f(x)=a_n(x-x_1)(x-x_2)...(x-x_n)(quotient function)
newcommand{typesetFactors}[2][x]{%
defvarname{#1}%
% #1 = function
PolToSturm{#2}{#2}%
PolSturmIsolateZeros**{#2}%
xintifboolexpr{PolDegree{#2}<2}{xintifboolexpr{PolDegree{#2}<1}{PolTypeset[varname]{#2}}{left(PolTypeset[varname]{#2}right)}}{%
xintifboolexpr{PolDegree{#2}=PolDegree{#2_norr}}{PolTypeset[varname]{#2}}{%
poldef #2_rat(x) := #2(x)/#2_norr(x);
poldef #2_norr_VZ(x) := xintSgn{PolLeadingCoeff{#2_norr}}#2_norr(x);
PolToSturm{#2_rat}{#2_rat}%
PolSturmIsolateZeros**{#2_rat}%
%
hideLeadingCoeff{#2}%
% Loop over all rational zeros of the function f = #2 ; #2_rat is the part with only rational zeros
% #2_rat is defined as #2(x)/#2_norr(x), and #2_norr is the part of #2 with no rational roots (square-free version is #2_irr )
loop
factorZeros{#2_rat}^{ignoreMultiplicityOne{#2_rat}}%
advance zeroCount 1
ifnum zeroCount<xinttheexprPolSturmNbOfIsolatedZeros{#2_rat}+1relax
repeat
xintifZero{PolDegree{#2_norr}}%
{}%
{left(PolTypeset[varname]{#2_norr_VZ}right)}%
}}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% End of code for factorization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

defsmstext{$nearrow$}
defsmftext{$searrow$}
defHPtext{H}
defTPtext{T}
defSPtext{Ter.}
defDiffRowtxt{f^{prime}}
defPoltxt{textcolor{lckColor}{Pol}}
defLueckentxt{textcolor{lckColor}{Loch}}


begin{document}

poldef zf1(x):=(-1/4)(x^2-4x+3)(x-2)^2(x^2+1)(x^2+2);
PolReduceCoeffs{zf1}
Given is the derivative:
[f^{prime}:t mapsto PolTypeset[t]{zf1} = typesetFactors[t]{zf1} ]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][t][zf1]
bigskip

poldef zf1(x):=(x^2-4x+3)*(x-2);
PolReduceCoeffs{zf1}
poldef nf1(x):=(x^2+1)(x-2)^2;
PolReduceCoeffs{nf1}
Given is the derivative:
[f^{prime}:x mapsto frac{PolTypeset{zf1}}{PolTypeset{nf1}} = frac{typesetFactors{zf1}}{typesetFactors{nf1}}]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][x][zf1](nf1)

end{document}


enter image description here






share|improve this answer














Out of topic!
For polynomials and rational functions with minimum one rational zero
we can do the factorization and finding the (only) rational roots with the help of
the xintexpr and polexpr packages. Then the table is build automatic.



So we can type for e.g. in the document



poldef zf1(x):=(-1/4)(x^2-4x+3)(x-2)^2(x^2+1)(x^2+2);
PolReduceCoeffs{zf1}
Given is the derivative:
[f^{prime}:t mapsto PolTypeset[t]{zf1} = typesetFactors[t]{zf1} ]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][t][zf1]


Here is the code for a full example.



documentclass[fleqn,svgnames,x11names,dvipsnames]{article}

usepackage[a4paper,margin=1.25cm]{geometry}
usepackage{amsmath,amssymb}
usepackage{xintexpr}
usepackage{polexpr}
usepackage{xfp,xparse,expl3,xstring}
usepackage{booktabs}
usepackage{siunitx}
sisetup{group-separator={,},output-decimal-marker={,},exponent-product=cdot,per-mode=fraction,product-units=single,
input-product=*,output-product=cdot,unit-mode=text,quotient-mode=fraction,locale=DE,range-phrase = { bis }}
usepackage{pstricks}

letfunkPolToExpr
letSTZeroLPolSturmIsolatedZeroLeft

NewExpandableDocumentCommand{XcalcR}{sO{8}m}{% calculates #3 and rounds to #2 decimals; non formating: for formated output use Xcalc not XcalcR
PolDecToString{xintREZ{xinttheiexpr[#2]reduce(#3)relax}}%
}

NewDocumentCommand{Xcalc}{t+stDsO{2}m}{% calculates #5, rounds to #4 decimals (trailing zeros are supressed) and typesets the number with num-macro formatting
IfBooleanT{#1}{xintifSgn{xinttheexpr #6relax}{}{+}{+}}% or as fraction, reduced or not reduced and with #3=D is a boolean in displaystyle
IfBooleanTF{#2}%
{IfBooleanT{#3}{displaystyle}%
IfBooleanTF{#4}%
{xintSignedFrac{xinttheexpr #6relax}}%
{xintSignedFrac{xinttheexpr reduce(#6)relax}}%
}%
{num{PolDecToString{xintREZ{xinttheiexpr[#5]reduce(#6)relax}}}}%
}


newcommand{NullStellen}[1]{%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{x_{##1} = Xcalc{PolSturmIsolatedZeroLeft{#1}{##1}}%
xintifForLast{}{; }}%
}


NewDocumentCommand{hackNst}{O{nt}D(){x}m}{%
xintifboolexpr{PolSturmNbOfIsolatedZeros{#3}=0}{}{%
xintiloop [1+1]
expandafterdefexpandaftertmpxintbracediloopindex
xintdefvar #2tmp = PolSturmIsolatedZeroLeft{#3}tmp;
xintdefvar #1tmp = PolSturmIsolatedZeroMultiplicity{#3}tmp;
ifnumxintiloopindex<numexprPolSturmNbOfIsolatedZeros{#3}relax
repeat
}%
}

NewDocumentCommand{GenFloatSturmZeros}{ssO{9}D(){x}m}{%
IfBooleanTF{#1}%
{%
PolToSturm{#5}{#5}%
PolSturmIsolateZeros**{#5}%
PolEnsureIntervalLengths{#5}{-#3}%
IfBooleanF{#2}{hackNst(#4){#5}}%
}%
{%
PolGenFloatVariant{#5}%
PolToSturm{#5}{#5}%
PolSturmIsolateZeros**{#5}%
PolEnsureIntervalLengths{#5}{-#3}%
}%
}


defsmstext{steigt}%
defsmftext{fällt}
defHPtext{Hochpkt.}
defTPtext{Tiefpkt.}
defSPtext{Terrassenpkt.}
defDiffRowtxt{f^{prime}}
deflueckColor#1{colorlet{lckColor}{#1}}
lueckColor{BrickRed}
defPoltxt{textcolor{lckColor}{Polstelle}}
defLueckentxt{textcolor{lckColor}{Def.-Lücke}}
defNotdeftxt{textcolor{lckColor}{diagup}}

NewDocumentCommand{VZTabelle}{sO{f}O{x}O{#21}!d()}{%
IfValueTF{#5}{%
PolGCD{#4}{#5}{commonfactorA}%
poldef erwzaehlerA(x) := (#4(x)#5(x))/(commonfactorA(x))^2 ;%
poldef gekuerzterNenner(x) := #5(x)/commonfactorA(x) ;%
PolGCD{erwzaehlerA}{commonfactorA}{commonfactorB}%
poldef commonfactorC(x) := commonfactorA(x)/commonfactorB(x) ;%
poldef erwzaehler(x) := erwzaehlerA(x)commonfactorC(x) ;%
}%
{%
poldef erwzaehler(x) := #4(x) ;%
poldef commonfactorC(x) := 1 ;%
}%
PolToSturm{erwzaehler}{erwzaehler}%
PolSturmIsolateZeros**{erwzaehler}%
PolEnsureIntervalLengths{erwzaehler}{-9}%
begin{tabular}{*{XcalcR{2+2*PolSturmNbOfIsolatedZeros{erwzaehler}}}{>{$}c<{$}}}
IfBooleanF{#1}{toprule}
IfValueTF{#5}{Firstrow{erwzaehler}{#3}{#5}}{Firstrow{erwzaehler}{#3}{1}}
IfValueTF{#5}{VZmakerows{erwzaehler}{#5}{#4}{#3}}{VZmakerows{erwzaehler}{1}{#4}{#3}}
IfValueTF{#5}{Diffrow{DiffRowtxt}{erwzaehler}{#3}{#5}}{Diffrow{DiffRowtxt}{erwzaehler}{#3}{1}}
IfValueTF{#5}{Graphrow{#2}{erwzaehler}{#5}}{Graphrow{#2}{erwzaehler}{1}}
IfBooleanF{#1}{ \ bottomrule}
end{tabular}%
}

defleadcoef#1{xintifboolexpr{PolLeadingCoeff{#1}=1}{}{Xcalc{PolLeadingCoeff{#1}}cdot}}

defnst#1#2{Xcalc*{STZeroL{#1}{#2}}}

defVZfktwertL#1#2{xintifSgn{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}-0.001relax)relax}{-}{0}{+}}

defVZfktwertR#1#2{xintifSgn{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}+0.001relax)relax}{-}{0}{+}}

defVZfktwert#1#2{xintifSgn{xinttheexpr #1(STZeroL{#1}{#2})relax}{-}{0}{+}}

deftabfactor#1#2#3#4{%
xintifboolexpr{STZeroL{#1}{#2}=0}%
{#4}%
{(#4Xcalc+*{-STZeroL{#1}{#2}})
xintifboolexpr{PolSturmIsolatedZeroMultiplicity{#1}{#2}=1}%
{%
xintifboolexpr{commonfactorC(STZeroL{#1}{#2})=0}%
{^{0}}%
{}%
}%
{%
xintifboolexpr{commonfactorC(STZeroL{#1}{#2})=0}%
{%
^{0}
}%
{%
^{PolSturmIsolatedZeroMultiplicity{#1}{#2}}
}%
}%
}%
}


defMonotonieL#1#2{xintifSgn{xinttheexpr #1(XcalcR{STZeroL{#1}{#2}-0.001})relax}{text{smftext}}{0}{text{smstext}}}

defMonotonieR#1#2{xintifSgn{xinttheexpr #1(XcalcR{STZeroL{#1}{#2}+0.001})relax}{text{smftext}}{0}{text{smstext}}}

defExtrema#1#2{xintifboolexpr{xinttheexpr (#1(XcalcR{STZeroL{#1}{#2}-0.001}))*(#1(XcalcR{STZeroL{#1}{#2}+0.001}))relax >0}%
{text{SPtext}}%
{%
xintifboolexpr{xinttheexpr #1(xinttheexpr STZeroL{#1}{#2}-0.001relax)relax>0}%
{text{HPtext}}%
{text{TPtext}}%
}%
}%


NewDocumentCommand{VZtabfac}{st{>}mmm}{%
IfBooleanTF{#1}%
{xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5})^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}}%
{%
IfBooleanTF{#2}%
{%
xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5}+0.001)^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}%
}%
{%
xintifSgn{xinttheexpr (-STZeroL{#3}{#4}+STZeroL{#3}{#5}-0.001)^xintifboolexpr{commonfactorC(STZeroL{#3}{#4})=0}{0}%
{PolSturmIsolatedZeroMultiplicity{#3}{#4}}relax}{-}{0}{+}%
}%
}%
}


newcommand{VZmakerows}[4]{%
xintifboolexpr{PolLeadingCoeff{#1}<0}%
{%
xintSignedFrac{xintIrr{PolLeadingCoeff{#1}}} & -
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do { & - & - } \ midrule
}%
{}%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{tabfactor{#1}{##1}{#3}{#4} & VZtabfac{#1}{##1}{1}%
xintFor* ##2 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}}}
do
{ &
IfDecimal{#2}%
{VZtabfac*{#1}{##1}{##2}}%
{%
xintifboolexpr{xinttheexpr #2(STZeroL{#1}{##2})relax = 0}%
{Notdeftxt}
{VZtabfac*{#1}{##1}{##2}}%
}%
& VZtabfac>{#1}{##1}{##2}
}
\ midrule
}
}


newcommand{Firstrow}[3]{%
#2 & -infty<#2<nst{#1}{1} & IfDecimal{#3}{#2=nst{#1}{1}}%
{xintifboolexpr{xinttheexpr #3(STZeroL{#1}{1})relax = 0 }%
{textcolor{lckColor}{#2=nst{#1}{1}}}%
{#2=nst{#1}{1}}%
}%
xintifboolexpr{PolSturmNbOfIsolatedZeros{#1}>1}{%
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#1}-1}}
do
{%
& nst{#1}{xinttheexpr ##1relax}<#2<nst{#1}{xinttheexpr ##1+1relax} &
IfDecimal{#3}%
{#2=nst{#1}{xinttheexpr ##1+1relax}}%
{xintifboolexpr{xinttheexpr #3(STZeroL{#1}{xinttheexpr ##1+1relax})relax = 0 }%
{textcolor{lckColor}{#2=nst{#1}{xinttheexpr ##1+1relax}}}%
{#2=nst{#1}{xinttheexpr ##1+1relax}}%
}%
}%
}%
{}%
& nst{#1}{PolSturmNbOfIsolatedZeros{#1}}<#2<+infty\ midrule
}


NewDocumentCommand{Diffrow}{mmmm}{%
#1(#3)
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#2}}}
do
{& VZfktwertL{#2}{##1} &
IfDecimal{#4}%
{VZfktwert{#2}{##1}}%
{%
xintifboolexpr{xinttheexpr #4(STZeroL{#2}{##1})relax = 0}%
{Notdeftxt}
{VZfktwert{#2}{##1}}%
}%
}%
& VZfktwertR{#2}{PolSturmNbOfIsolatedZeros{#2}} \ midrule
}


newcommand{Graphrow}[3]{%
text{G}_{#1}
xintFor* ##1 in {xintSeq{1}{PolSturmNbOfIsolatedZeros{#2}}}
do
{& MonotonieL{#2}{##1} & IfDecimal{#3}{Extrema{#2}{##1}}{%
xintifboolexpr{xinttheexpr #3(STZeroL{#2}{##1})relax = 0}%
{%
xintifboolexpr{xinttheexpr gekuerzterNenner(STZeroL{#2}{##1})relax =0}%
{text{Poltxt}}
{text{Lueckentxt}}
}%
{Extrema{#2}{##1}}%
}%
}%
& MonotonieR{#2}{PolSturmNbOfIsolatedZeros{#2}}
}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Begin of code for factorization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Counter for LOOP over the roots of f
newcountzeroCount
% Set counter to 1
zeroCount=1

% Proof if a root is "0" then only write x and not (x-0) ...
% factor the roots like (x-x_1) if x_1>0, (x+x_1) if x_1<0
newcommand{factorZeros}[1]{%
xintifZero{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}%
{varname}
{left(varnamexintiiifSgn{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}{+}{-}{-}
xintSignedFrac{xintIrr{xintAbs{PolSturmIsolatedZeroLeft{#1}{thezeroCount}}}}right)
}
}

% Don't write multiplicity of a root in case it is =1
newcommand{ignoreMultiplicityOne}[1]{%
xintifOne{PolSturmIsolatedZeroMultiplicity{#1}{thezeroCount}}{}{PolSturmIsolatedZeroMultiplicity{#1}{thezeroCount}}
}

% Hide leading coefficient if leading coefficient is + or - 1.
newcommand{hideLeadingCoeff}[1]{%
xintifOne{xintAbs{PolLeadingCoeff{#1}}}%
{xintiiifSgn{PolLeadingCoeff{#1}}{-}{}{}}
{xintSignedFrac{xintIrr{PolLeadingCoeff{#1}}}}
}

% Typeset polynomial as factors of its rational roots: f(x)=a_n(x-x_1)(x-x_2)...(x-x_n)(quotient function)
newcommand{typesetFactors}[2][x]{%
defvarname{#1}%
% #1 = function
PolToSturm{#2}{#2}%
PolSturmIsolateZeros**{#2}%
xintifboolexpr{PolDegree{#2}<2}{xintifboolexpr{PolDegree{#2}<1}{PolTypeset[varname]{#2}}{left(PolTypeset[varname]{#2}right)}}{%
xintifboolexpr{PolDegree{#2}=PolDegree{#2_norr}}{PolTypeset[varname]{#2}}{%
poldef #2_rat(x) := #2(x)/#2_norr(x);
poldef #2_norr_VZ(x) := xintSgn{PolLeadingCoeff{#2_norr}}#2_norr(x);
PolToSturm{#2_rat}{#2_rat}%
PolSturmIsolateZeros**{#2_rat}%
%
hideLeadingCoeff{#2}%
% Loop over all rational zeros of the function f = #2 ; #2_rat is the part with only rational zeros
% #2_rat is defined as #2(x)/#2_norr(x), and #2_norr is the part of #2 with no rational roots (square-free version is #2_irr )
loop
factorZeros{#2_rat}^{ignoreMultiplicityOne{#2_rat}}%
advance zeroCount 1
ifnum zeroCount<xinttheexprPolSturmNbOfIsolatedZeros{#2_rat}+1relax
repeat
xintifZero{PolDegree{#2_norr}}%
{}%
{left(PolTypeset[varname]{#2_norr_VZ}right)}%
}}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% End of code for factorization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

defsmstext{$nearrow$}
defsmftext{$searrow$}
defHPtext{H}
defTPtext{T}
defSPtext{Ter.}
defDiffRowtxt{f^{prime}}
defPoltxt{textcolor{lckColor}{Pol}}
defLueckentxt{textcolor{lckColor}{Loch}}


begin{document}

poldef zf1(x):=(-1/4)(x^2-4x+3)(x-2)^2(x^2+1)(x^2+2);
PolReduceCoeffs{zf1}
Given is the derivative:
[f^{prime}:t mapsto PolTypeset[t]{zf1} = typesetFactors[t]{zf1} ]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][t][zf1]
bigskip

poldef zf1(x):=(x^2-4x+3)*(x-2);
PolReduceCoeffs{zf1}
poldef nf1(x):=(x^2+1)(x-2)^2;
PolReduceCoeffs{nf1}
Given is the derivative:
[f^{prime}:x mapsto frac{PolTypeset{zf1}}{PolTypeset{nf1}} = frac{typesetFactors{zf1}}{typesetFactors{nf1}}]

medskip
renewcommand{arraystretch}{1.2}%
VZTabelle[f][x][zf1](nf1)

end{document}


enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited 2 days ago

























answered Dec 6 at 5:43









Thomas

694212




694212












  • (+1) Thank you for your problem expansion. But truly I don't understand anything. hihi :-))
    – chishimotoji
    Dec 6 at 8:32










  • very impressive but you seem to be using some development version of polexpr which finds rational roots as current version 0.6 does not have the double starred PolSturmIsolateZeros**.... I am very jealous!
    – jfbu
    Dec 6 at 9:51










  • @jfbu yes, you are right. I actually forgot that.
    – Thomas
    Dec 6 at 11:17










  • I will make my best to ping the polexpr author to make soon a release of dev version....
    – jfbu
    Dec 6 at 13:41










  • The code has been adapted to the new syntax of polexpr 0.7, which will appear shortly on ctan. Many thanks to the diligent author of polexpr.
    – Thomas
    2 days ago


















  • (+1) Thank you for your problem expansion. But truly I don't understand anything. hihi :-))
    – chishimotoji
    Dec 6 at 8:32










  • very impressive but you seem to be using some development version of polexpr which finds rational roots as current version 0.6 does not have the double starred PolSturmIsolateZeros**.... I am very jealous!
    – jfbu
    Dec 6 at 9:51










  • @jfbu yes, you are right. I actually forgot that.
    – Thomas
    Dec 6 at 11:17










  • I will make my best to ping the polexpr author to make soon a release of dev version....
    – jfbu
    Dec 6 at 13:41










  • The code has been adapted to the new syntax of polexpr 0.7, which will appear shortly on ctan. Many thanks to the diligent author of polexpr.
    – Thomas
    2 days ago
















(+1) Thank you for your problem expansion. But truly I don't understand anything. hihi :-))
– chishimotoji
Dec 6 at 8:32




(+1) Thank you for your problem expansion. But truly I don't understand anything. hihi :-))
– chishimotoji
Dec 6 at 8:32












very impressive but you seem to be using some development version of polexpr which finds rational roots as current version 0.6 does not have the double starred PolSturmIsolateZeros**.... I am very jealous!
– jfbu
Dec 6 at 9:51




very impressive but you seem to be using some development version of polexpr which finds rational roots as current version 0.6 does not have the double starred PolSturmIsolateZeros**.... I am very jealous!
– jfbu
Dec 6 at 9:51












@jfbu yes, you are right. I actually forgot that.
– Thomas
Dec 6 at 11:17




@jfbu yes, you are right. I actually forgot that.
– Thomas
Dec 6 at 11:17












I will make my best to ping the polexpr author to make soon a release of dev version....
– jfbu
Dec 6 at 13:41




I will make my best to ping the polexpr author to make soon a release of dev version....
– jfbu
Dec 6 at 13:41












The code has been adapted to the new syntax of polexpr 0.7, which will appear shortly on ctan. Many thanks to the diligent author of polexpr.
– Thomas
2 days ago




The code has been adapted to the new syntax of polexpr 0.7, which will appear shortly on ctan. Many thanks to the diligent author of polexpr.
– Thomas
2 days ago


















draft saved

draft discarded




















































Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f463103%2fproblem-with-tkz-tab-and-its-the-pstricks-package-equivalent%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Can I use Tabulator js library in my java Spring + Thymeleaf project?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents