Function which behave having other face
up vote
0
down vote
favorite
I encountered a formula in density of exponential family of distributions,
begin{eqnarray*}
f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
end{eqnarray*}
and it seemed to me that there is other formula expression of argument of exponential function.
To be more precise,
begin{eqnarray*}
left(
begin{array}{c}
alpha(y) \
gamma(theta) \
epsilon_1(y,theta)
end{array}
right) otimes left(
begin{array}{c}
delta(y) \
beta(theta) \
epsilon_2(y,theta)
end{array}
right)^{mathrm{T}} = left(
begin{array}{ccc}
alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
end{array}
right),
end{eqnarray*}
so if there is convenience function $epsilon_1(y,theta)$ such that,
begin{eqnarray*}
left{
begin{array}{l}
epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
epsilon_1(y,theta)beta(theta) approx 0
end{array}
right.,
end{eqnarray*}
and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.
This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
But existence of such function $epsilon_1$ interested me.
Do you have any idea of construction of $epsilon_1(y,theta)?$
probability statistics
add a comment |
up vote
0
down vote
favorite
I encountered a formula in density of exponential family of distributions,
begin{eqnarray*}
f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
end{eqnarray*}
and it seemed to me that there is other formula expression of argument of exponential function.
To be more precise,
begin{eqnarray*}
left(
begin{array}{c}
alpha(y) \
gamma(theta) \
epsilon_1(y,theta)
end{array}
right) otimes left(
begin{array}{c}
delta(y) \
beta(theta) \
epsilon_2(y,theta)
end{array}
right)^{mathrm{T}} = left(
begin{array}{ccc}
alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
end{array}
right),
end{eqnarray*}
so if there is convenience function $epsilon_1(y,theta)$ such that,
begin{eqnarray*}
left{
begin{array}{l}
epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
epsilon_1(y,theta)beta(theta) approx 0
end{array}
right.,
end{eqnarray*}
and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.
This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
But existence of such function $epsilon_1$ interested me.
Do you have any idea of construction of $epsilon_1(y,theta)?$
probability statistics
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I encountered a formula in density of exponential family of distributions,
begin{eqnarray*}
f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
end{eqnarray*}
and it seemed to me that there is other formula expression of argument of exponential function.
To be more precise,
begin{eqnarray*}
left(
begin{array}{c}
alpha(y) \
gamma(theta) \
epsilon_1(y,theta)
end{array}
right) otimes left(
begin{array}{c}
delta(y) \
beta(theta) \
epsilon_2(y,theta)
end{array}
right)^{mathrm{T}} = left(
begin{array}{ccc}
alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
end{array}
right),
end{eqnarray*}
so if there is convenience function $epsilon_1(y,theta)$ such that,
begin{eqnarray*}
left{
begin{array}{l}
epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
epsilon_1(y,theta)beta(theta) approx 0
end{array}
right.,
end{eqnarray*}
and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.
This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
But existence of such function $epsilon_1$ interested me.
Do you have any idea of construction of $epsilon_1(y,theta)?$
probability statistics
I encountered a formula in density of exponential family of distributions,
begin{eqnarray*}
f(y;theta) = expBig[a(y)b(theta)+d(y)+c(theta)Big],
end{eqnarray*}
and it seemed to me that there is other formula expression of argument of exponential function.
To be more precise,
begin{eqnarray*}
left(
begin{array}{c}
alpha(y) \
gamma(theta) \
epsilon_1(y,theta)
end{array}
right) otimes left(
begin{array}{c}
delta(y) \
beta(theta) \
epsilon_2(y,theta)
end{array}
right)^{mathrm{T}} = left(
begin{array}{ccc}
alpha(y)delta(y) & alpha(y)beta(theta) & alpha(y)epsilon_2 \
gamma(theta)delta(y) & gamma(theta)beta(theta) & gamma(theta)epsilon_2 \
epsilon_1delta(y) & epsilon_1beta(theta) & epsilon_1epsilon_2
end{array}
right),
end{eqnarray*}
so if there is convenience function $epsilon_1(y,theta)$ such that,
begin{eqnarray*}
left{
begin{array}{l}
epsilon_1(y,theta)delta(y) approx Cdelta(y) (C>>1) \
epsilon_1(y,theta)beta(theta) approx 0
end{array}
right.,
end{eqnarray*}
and $epsilon_2$ which suppress $alpha$ and emphasize $gamma$,
(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)-element of the matrix remain where $beta(theta)gamma(y) << alpha(y)gamma(theta)$.
This calculation may not make sense in first plobrem of formula exchange because $epsilon_1epsilon_2$ remain.
But existence of such function $epsilon_1$ interested me.
Do you have any idea of construction of $epsilon_1(y,theta)?$
probability statistics
probability statistics
edited Nov 19 at 9:30
asked Nov 18 at 8:59
quickybrown
13
13
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3003279%2ffunction-which-behave-having-other-face%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown