On the closure of the convex hull of a sequence in normed spaces
up vote
0
down vote
favorite
Let $E$ be a infinite dimensional normed spaces and $(x_n)_{n=1}^infty$ be a sequence in $E$ converging to zero. Is it true that the closure of the convex hull of the set ${x_n: nin mathbb{N}}cup{0}$ in $E$ is equal to the closure of the convex hull of the set ${x_n: nin mathbb{N}}$ in $E$, that is, is it true that $overline{co({x_n: nin mathbb{N}}cup{0})}=overline{co({x_n: nin mathbb{N}})}$ ? (Here we assume that for all $nin mathbb{N}$, $x_nneq 0$.)
However, in may books, instead of writing $overline{co({x_n: nin mathbb{N}})}$, I see that it is written $overline{co({x_n: nin mathbb{N}}cup{0})}$. But, I think that this equality should be true, I mean, these two closures should be the same, which can be seen when we consider the well-known description of the convex hull of a subset $Asubset E$, namely, $co(A)={sum_{n=1}^Nlambda_nx_n: x_nin A, lambda_ngeq0, sum_{n=1}^Nlambda_n=1, Ninmathbb{N}}$.
Am I right?
Thanks for any comment/answer.
functional-analysis normed-spaces
add a comment |
up vote
0
down vote
favorite
Let $E$ be a infinite dimensional normed spaces and $(x_n)_{n=1}^infty$ be a sequence in $E$ converging to zero. Is it true that the closure of the convex hull of the set ${x_n: nin mathbb{N}}cup{0}$ in $E$ is equal to the closure of the convex hull of the set ${x_n: nin mathbb{N}}$ in $E$, that is, is it true that $overline{co({x_n: nin mathbb{N}}cup{0})}=overline{co({x_n: nin mathbb{N}})}$ ? (Here we assume that for all $nin mathbb{N}$, $x_nneq 0$.)
However, in may books, instead of writing $overline{co({x_n: nin mathbb{N}})}$, I see that it is written $overline{co({x_n: nin mathbb{N}}cup{0})}$. But, I think that this equality should be true, I mean, these two closures should be the same, which can be seen when we consider the well-known description of the convex hull of a subset $Asubset E$, namely, $co(A)={sum_{n=1}^Nlambda_nx_n: x_nin A, lambda_ngeq0, sum_{n=1}^Nlambda_n=1, Ninmathbb{N}}$.
Am I right?
Thanks for any comment/answer.
functional-analysis normed-spaces
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $E$ be a infinite dimensional normed spaces and $(x_n)_{n=1}^infty$ be a sequence in $E$ converging to zero. Is it true that the closure of the convex hull of the set ${x_n: nin mathbb{N}}cup{0}$ in $E$ is equal to the closure of the convex hull of the set ${x_n: nin mathbb{N}}$ in $E$, that is, is it true that $overline{co({x_n: nin mathbb{N}}cup{0})}=overline{co({x_n: nin mathbb{N}})}$ ? (Here we assume that for all $nin mathbb{N}$, $x_nneq 0$.)
However, in may books, instead of writing $overline{co({x_n: nin mathbb{N}})}$, I see that it is written $overline{co({x_n: nin mathbb{N}}cup{0})}$. But, I think that this equality should be true, I mean, these two closures should be the same, which can be seen when we consider the well-known description of the convex hull of a subset $Asubset E$, namely, $co(A)={sum_{n=1}^Nlambda_nx_n: x_nin A, lambda_ngeq0, sum_{n=1}^Nlambda_n=1, Ninmathbb{N}}$.
Am I right?
Thanks for any comment/answer.
functional-analysis normed-spaces
Let $E$ be a infinite dimensional normed spaces and $(x_n)_{n=1}^infty$ be a sequence in $E$ converging to zero. Is it true that the closure of the convex hull of the set ${x_n: nin mathbb{N}}cup{0}$ in $E$ is equal to the closure of the convex hull of the set ${x_n: nin mathbb{N}}$ in $E$, that is, is it true that $overline{co({x_n: nin mathbb{N}}cup{0})}=overline{co({x_n: nin mathbb{N}})}$ ? (Here we assume that for all $nin mathbb{N}$, $x_nneq 0$.)
However, in may books, instead of writing $overline{co({x_n: nin mathbb{N}})}$, I see that it is written $overline{co({x_n: nin mathbb{N}}cup{0})}$. But, I think that this equality should be true, I mean, these two closures should be the same, which can be seen when we consider the well-known description of the convex hull of a subset $Asubset E$, namely, $co(A)={sum_{n=1}^Nlambda_nx_n: x_nin A, lambda_ngeq0, sum_{n=1}^Nlambda_n=1, Ninmathbb{N}}$.
Am I right?
Thanks for any comment/answer.
functional-analysis normed-spaces
functional-analysis normed-spaces
asked Nov 19 at 7:41
mathmax
1896
1896
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Just verify that each side is contained in the other. Obviously, RHS is contained in LHS. For the other way it is enough to show that ${x_n:n in mathbb N} cup {0} $ is contained in RHS (because RHS is closed and convex). This is true because RHS contains the closure of ${x_n:n in mathbb N}$.
Kavi Rama Murthy: I agree with you. But, since I saw the LHS in many books, I thought that "Am I missing something ?". So, the equality is indeed the case. Thanks for the explanation.
– mathmax
Nov 19 at 7:58
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Just verify that each side is contained in the other. Obviously, RHS is contained in LHS. For the other way it is enough to show that ${x_n:n in mathbb N} cup {0} $ is contained in RHS (because RHS is closed and convex). This is true because RHS contains the closure of ${x_n:n in mathbb N}$.
Kavi Rama Murthy: I agree with you. But, since I saw the LHS in many books, I thought that "Am I missing something ?". So, the equality is indeed the case. Thanks for the explanation.
– mathmax
Nov 19 at 7:58
add a comment |
up vote
0
down vote
accepted
Just verify that each side is contained in the other. Obviously, RHS is contained in LHS. For the other way it is enough to show that ${x_n:n in mathbb N} cup {0} $ is contained in RHS (because RHS is closed and convex). This is true because RHS contains the closure of ${x_n:n in mathbb N}$.
Kavi Rama Murthy: I agree with you. But, since I saw the LHS in many books, I thought that "Am I missing something ?". So, the equality is indeed the case. Thanks for the explanation.
– mathmax
Nov 19 at 7:58
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Just verify that each side is contained in the other. Obviously, RHS is contained in LHS. For the other way it is enough to show that ${x_n:n in mathbb N} cup {0} $ is contained in RHS (because RHS is closed and convex). This is true because RHS contains the closure of ${x_n:n in mathbb N}$.
Just verify that each side is contained in the other. Obviously, RHS is contained in LHS. For the other way it is enough to show that ${x_n:n in mathbb N} cup {0} $ is contained in RHS (because RHS is closed and convex). This is true because RHS contains the closure of ${x_n:n in mathbb N}$.
answered Nov 19 at 7:49
Kavi Rama Murthy
45.9k31854
45.9k31854
Kavi Rama Murthy: I agree with you. But, since I saw the LHS in many books, I thought that "Am I missing something ?". So, the equality is indeed the case. Thanks for the explanation.
– mathmax
Nov 19 at 7:58
add a comment |
Kavi Rama Murthy: I agree with you. But, since I saw the LHS in many books, I thought that "Am I missing something ?". So, the equality is indeed the case. Thanks for the explanation.
– mathmax
Nov 19 at 7:58
Kavi Rama Murthy: I agree with you. But, since I saw the LHS in many books, I thought that "Am I missing something ?". So, the equality is indeed the case. Thanks for the explanation.
– mathmax
Nov 19 at 7:58
Kavi Rama Murthy: I agree with you. But, since I saw the LHS in many books, I thought that "Am I missing something ?". So, the equality is indeed the case. Thanks for the explanation.
– mathmax
Nov 19 at 7:58
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3004625%2fon-the-closure-of-the-convex-hull-of-a-sequence-in-normed-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown