$int_0^infty frac{x^aln(x)}{(x^2-bx+1)^{a+1}}{rm d}x = 0$?
$begingroup$
Does
$$int_0^infty frac{x^aln(x)}{(x^2-bx+1)^{a+1}}{rm d}x = 0$$
for all real numbers $a > 0$ and $b < 2$?
I came across this conjecture by showing its validity for the positive integer values of $a$ only.
To derive the result for positive integer $a$, make the substitution $u=frac1x$ on
$$ int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x $$
and we get
$$ int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x \
implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0
$$
From here, we can use Leibniz's rule of integration (differentiating with respect to $b$) $n$ times to retrieve
$$int_0^infty frac{x^nln(x)}{(x^2-bx+1)^{n+1}}{rm d}x = 0$$
Yet I'm guessing that it is also valid for any real positive value of $a$ from numerical evidence. Complex methods are welcome but I won't really be familiar with them, so I would prefer sticking to real methods.
calculus integration definite-integrals improper-integrals
$endgroup$
add a comment |
$begingroup$
Does
$$int_0^infty frac{x^aln(x)}{(x^2-bx+1)^{a+1}}{rm d}x = 0$$
for all real numbers $a > 0$ and $b < 2$?
I came across this conjecture by showing its validity for the positive integer values of $a$ only.
To derive the result for positive integer $a$, make the substitution $u=frac1x$ on
$$ int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x $$
and we get
$$ int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x \
implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0
$$
From here, we can use Leibniz's rule of integration (differentiating with respect to $b$) $n$ times to retrieve
$$int_0^infty frac{x^nln(x)}{(x^2-bx+1)^{n+1}}{rm d}x = 0$$
Yet I'm guessing that it is also valid for any real positive value of $a$ from numerical evidence. Complex methods are welcome but I won't really be familiar with them, so I would prefer sticking to real methods.
calculus integration definite-integrals improper-integrals
$endgroup$
$begingroup$
I am not quite sure: How do you get from $$int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x$$ to $$int_0^infty frac{x^nln(x)}{(x^2-bx+1)^{n+1}}{rm d}x$$? With respect to which parameter do you differentiate?
$endgroup$
– mrtaurho
Dec 30 '18 at 14:40
$begingroup$
Differentiate with respect to $b$.
$endgroup$
– Mint
Dec 30 '18 at 14:41
1
$begingroup$
I would include this detail hence, at least to me, it was not clear at all.
$endgroup$
– mrtaurho
Dec 30 '18 at 14:45
1
$begingroup$
Same proof as before.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 15:00
add a comment |
$begingroup$
Does
$$int_0^infty frac{x^aln(x)}{(x^2-bx+1)^{a+1}}{rm d}x = 0$$
for all real numbers $a > 0$ and $b < 2$?
I came across this conjecture by showing its validity for the positive integer values of $a$ only.
To derive the result for positive integer $a$, make the substitution $u=frac1x$ on
$$ int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x $$
and we get
$$ int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x \
implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0
$$
From here, we can use Leibniz's rule of integration (differentiating with respect to $b$) $n$ times to retrieve
$$int_0^infty frac{x^nln(x)}{(x^2-bx+1)^{n+1}}{rm d}x = 0$$
Yet I'm guessing that it is also valid for any real positive value of $a$ from numerical evidence. Complex methods are welcome but I won't really be familiar with them, so I would prefer sticking to real methods.
calculus integration definite-integrals improper-integrals
$endgroup$
Does
$$int_0^infty frac{x^aln(x)}{(x^2-bx+1)^{a+1}}{rm d}x = 0$$
for all real numbers $a > 0$ and $b < 2$?
I came across this conjecture by showing its validity for the positive integer values of $a$ only.
To derive the result for positive integer $a$, make the substitution $u=frac1x$ on
$$ int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x $$
and we get
$$ int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x \
implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0
$$
From here, we can use Leibniz's rule of integration (differentiating with respect to $b$) $n$ times to retrieve
$$int_0^infty frac{x^nln(x)}{(x^2-bx+1)^{n+1}}{rm d}x = 0$$
Yet I'm guessing that it is also valid for any real positive value of $a$ from numerical evidence. Complex methods are welcome but I won't really be familiar with them, so I would prefer sticking to real methods.
calculus integration definite-integrals improper-integrals
calculus integration definite-integrals improper-integrals
edited Dec 30 '18 at 14:56
Mint
asked Dec 30 '18 at 14:35
MintMint
5411417
5411417
$begingroup$
I am not quite sure: How do you get from $$int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x$$ to $$int_0^infty frac{x^nln(x)}{(x^2-bx+1)^{n+1}}{rm d}x$$? With respect to which parameter do you differentiate?
$endgroup$
– mrtaurho
Dec 30 '18 at 14:40
$begingroup$
Differentiate with respect to $b$.
$endgroup$
– Mint
Dec 30 '18 at 14:41
1
$begingroup$
I would include this detail hence, at least to me, it was not clear at all.
$endgroup$
– mrtaurho
Dec 30 '18 at 14:45
1
$begingroup$
Same proof as before.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 15:00
add a comment |
$begingroup$
I am not quite sure: How do you get from $$int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x$$ to $$int_0^infty frac{x^nln(x)}{(x^2-bx+1)^{n+1}}{rm d}x$$? With respect to which parameter do you differentiate?
$endgroup$
– mrtaurho
Dec 30 '18 at 14:40
$begingroup$
Differentiate with respect to $b$.
$endgroup$
– Mint
Dec 30 '18 at 14:41
1
$begingroup$
I would include this detail hence, at least to me, it was not clear at all.
$endgroup$
– mrtaurho
Dec 30 '18 at 14:45
1
$begingroup$
Same proof as before.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 15:00
$begingroup$
I am not quite sure: How do you get from $$int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x$$ to $$int_0^infty frac{x^nln(x)}{(x^2-bx+1)^{n+1}}{rm d}x$$? With respect to which parameter do you differentiate?
$endgroup$
– mrtaurho
Dec 30 '18 at 14:40
$begingroup$
I am not quite sure: How do you get from $$int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x$$ to $$int_0^infty frac{x^nln(x)}{(x^2-bx+1)^{n+1}}{rm d}x$$? With respect to which parameter do you differentiate?
$endgroup$
– mrtaurho
Dec 30 '18 at 14:40
$begingroup$
Differentiate with respect to $b$.
$endgroup$
– Mint
Dec 30 '18 at 14:41
$begingroup$
Differentiate with respect to $b$.
$endgroup$
– Mint
Dec 30 '18 at 14:41
1
1
$begingroup$
I would include this detail hence, at least to me, it was not clear at all.
$endgroup$
– mrtaurho
Dec 30 '18 at 14:45
$begingroup$
I would include this detail hence, at least to me, it was not clear at all.
$endgroup$
– mrtaurho
Dec 30 '18 at 14:45
1
1
$begingroup$
Same proof as before.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 15:00
$begingroup$
Same proof as before.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 15:00
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Of course it does. Just substitute $displaystyle{x=frac{1}{t}}$ to get:
$$I=int_0^infty frac{x^aln(x)}{(x^2-bx+1)^{a+1}}{rm d}x=int_infty^0 frac{1}{t^a} frac{lnleft(frac{1}{t}right)}{left(frac{1}{t^2}-frac{b}{t}+1right)^{a+1}}frac{-dt}{t^2}$$
$$=int_0^infty frac{t^{2a+2}lnleft(frac{1}{t}right)}{left(1-bt+t^2right)^{a+1}}frac{dt}{t^{a+2}}=int_0^infty frac{t^alnleft(frac{1}{t}right)}{(t^2-bt+1)^{a+1}}dt=-I$$
$$I=-IRightarrow I=0$$
$endgroup$
$begingroup$
Omg I feel so dumb, thank you so much. Standard substitutions slip by me occasionally...
$endgroup$
– Mint
Dec 30 '18 at 14:51
2
$begingroup$
I like your derivation in your question! A small typo:$$int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - color{red}k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0$$
$endgroup$
– Zacky
Dec 30 '18 at 14:53
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056877%2fint-0-infty-fracxa-lnxx2-bx1a1-rm-dx-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Of course it does. Just substitute $displaystyle{x=frac{1}{t}}$ to get:
$$I=int_0^infty frac{x^aln(x)}{(x^2-bx+1)^{a+1}}{rm d}x=int_infty^0 frac{1}{t^a} frac{lnleft(frac{1}{t}right)}{left(frac{1}{t^2}-frac{b}{t}+1right)^{a+1}}frac{-dt}{t^2}$$
$$=int_0^infty frac{t^{2a+2}lnleft(frac{1}{t}right)}{left(1-bt+t^2right)^{a+1}}frac{dt}{t^{a+2}}=int_0^infty frac{t^alnleft(frac{1}{t}right)}{(t^2-bt+1)^{a+1}}dt=-I$$
$$I=-IRightarrow I=0$$
$endgroup$
$begingroup$
Omg I feel so dumb, thank you so much. Standard substitutions slip by me occasionally...
$endgroup$
– Mint
Dec 30 '18 at 14:51
2
$begingroup$
I like your derivation in your question! A small typo:$$int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - color{red}k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0$$
$endgroup$
– Zacky
Dec 30 '18 at 14:53
add a comment |
$begingroup$
Of course it does. Just substitute $displaystyle{x=frac{1}{t}}$ to get:
$$I=int_0^infty frac{x^aln(x)}{(x^2-bx+1)^{a+1}}{rm d}x=int_infty^0 frac{1}{t^a} frac{lnleft(frac{1}{t}right)}{left(frac{1}{t^2}-frac{b}{t}+1right)^{a+1}}frac{-dt}{t^2}$$
$$=int_0^infty frac{t^{2a+2}lnleft(frac{1}{t}right)}{left(1-bt+t^2right)^{a+1}}frac{dt}{t^{a+2}}=int_0^infty frac{t^alnleft(frac{1}{t}right)}{(t^2-bt+1)^{a+1}}dt=-I$$
$$I=-IRightarrow I=0$$
$endgroup$
$begingroup$
Omg I feel so dumb, thank you so much. Standard substitutions slip by me occasionally...
$endgroup$
– Mint
Dec 30 '18 at 14:51
2
$begingroup$
I like your derivation in your question! A small typo:$$int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - color{red}k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0$$
$endgroup$
– Zacky
Dec 30 '18 at 14:53
add a comment |
$begingroup$
Of course it does. Just substitute $displaystyle{x=frac{1}{t}}$ to get:
$$I=int_0^infty frac{x^aln(x)}{(x^2-bx+1)^{a+1}}{rm d}x=int_infty^0 frac{1}{t^a} frac{lnleft(frac{1}{t}right)}{left(frac{1}{t^2}-frac{b}{t}+1right)^{a+1}}frac{-dt}{t^2}$$
$$=int_0^infty frac{t^{2a+2}lnleft(frac{1}{t}right)}{left(1-bt+t^2right)^{a+1}}frac{dt}{t^{a+2}}=int_0^infty frac{t^alnleft(frac{1}{t}right)}{(t^2-bt+1)^{a+1}}dt=-I$$
$$I=-IRightarrow I=0$$
$endgroup$
Of course it does. Just substitute $displaystyle{x=frac{1}{t}}$ to get:
$$I=int_0^infty frac{x^aln(x)}{(x^2-bx+1)^{a+1}}{rm d}x=int_infty^0 frac{1}{t^a} frac{lnleft(frac{1}{t}right)}{left(frac{1}{t^2}-frac{b}{t}+1right)^{a+1}}frac{-dt}{t^2}$$
$$=int_0^infty frac{t^{2a+2}lnleft(frac{1}{t}right)}{left(1-bt+t^2right)^{a+1}}frac{dt}{t^{a+2}}=int_0^infty frac{t^alnleft(frac{1}{t}right)}{(t^2-bt+1)^{a+1}}dt=-I$$
$$I=-IRightarrow I=0$$
edited Dec 30 '18 at 15:02
answered Dec 30 '18 at 14:46
ZackyZacky
7,88511062
7,88511062
$begingroup$
Omg I feel so dumb, thank you so much. Standard substitutions slip by me occasionally...
$endgroup$
– Mint
Dec 30 '18 at 14:51
2
$begingroup$
I like your derivation in your question! A small typo:$$int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - color{red}k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0$$
$endgroup$
– Zacky
Dec 30 '18 at 14:53
add a comment |
$begingroup$
Omg I feel so dumb, thank you so much. Standard substitutions slip by me occasionally...
$endgroup$
– Mint
Dec 30 '18 at 14:51
2
$begingroup$
I like your derivation in your question! A small typo:$$int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - color{red}k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0$$
$endgroup$
– Zacky
Dec 30 '18 at 14:53
$begingroup$
Omg I feel so dumb, thank you so much. Standard substitutions slip by me occasionally...
$endgroup$
– Mint
Dec 30 '18 at 14:51
$begingroup$
Omg I feel so dumb, thank you so much. Standard substitutions slip by me occasionally...
$endgroup$
– Mint
Dec 30 '18 at 14:51
2
2
$begingroup$
I like your derivation in your question! A small typo:$$int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - color{red}k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0$$
$endgroup$
– Zacky
Dec 30 '18 at 14:53
$begingroup$
I like your derivation in your question! A small typo:$$int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x = int_0^infty frac{ln(1+x^k)}{x^2-bx+1}{rm d}x - color{red}k int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x implies int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x = 0$$
$endgroup$
– Zacky
Dec 30 '18 at 14:53
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056877%2fint-0-infty-fracxa-lnxx2-bx1a1-rm-dx-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I am not quite sure: How do you get from $$int_0^infty frac{ln(x)}{x^2-bx+1}{rm d}x$$ to $$int_0^infty frac{x^nln(x)}{(x^2-bx+1)^{n+1}}{rm d}x$$? With respect to which parameter do you differentiate?
$endgroup$
– mrtaurho
Dec 30 '18 at 14:40
$begingroup$
Differentiate with respect to $b$.
$endgroup$
– Mint
Dec 30 '18 at 14:41
1
$begingroup$
I would include this detail hence, at least to me, it was not clear at all.
$endgroup$
– mrtaurho
Dec 30 '18 at 14:45
1
$begingroup$
Same proof as before.
$endgroup$
– Jack D'Aurizio
Dec 30 '18 at 15:00