sum of this series: $sum_{n=1}^{infty}frac{1}{4n^2-1}$












12












$begingroup$


I am trying to calculate the sum of this infinite series after having read the series chapter of my textbook: $$sum_{n=1}^{infty}frac{1}{4n^2-1}$$



my steps:



$$sum_{n=1}^{infty}frac{1}{4n^2-1}=sum_{n=1}^{infty}frac{2}{4n^2-1}-sum_{n=1}^{infty}frac{1}{4n^2-1}=..help..=sum$$



I am lacking some important properties, I feel I am coming to the right step and cannot spit that out..










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
    $endgroup$
    – Ofir
    Dec 26 '12 at 10:47








  • 1




    $begingroup$
    see math.stackexchange.com/questions/238728/finding-summation/…
    $endgroup$
    – MathOverview
    Dec 26 '12 at 10:48






  • 1




    $begingroup$
    @doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
    $endgroup$
    – Rustyn
    Dec 26 '12 at 10:55


















12












$begingroup$


I am trying to calculate the sum of this infinite series after having read the series chapter of my textbook: $$sum_{n=1}^{infty}frac{1}{4n^2-1}$$



my steps:



$$sum_{n=1}^{infty}frac{1}{4n^2-1}=sum_{n=1}^{infty}frac{2}{4n^2-1}-sum_{n=1}^{infty}frac{1}{4n^2-1}=..help..=sum$$



I am lacking some important properties, I feel I am coming to the right step and cannot spit that out..










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
    $endgroup$
    – Ofir
    Dec 26 '12 at 10:47








  • 1




    $begingroup$
    see math.stackexchange.com/questions/238728/finding-summation/…
    $endgroup$
    – MathOverview
    Dec 26 '12 at 10:48






  • 1




    $begingroup$
    @doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
    $endgroup$
    – Rustyn
    Dec 26 '12 at 10:55
















12












12








12


7



$begingroup$


I am trying to calculate the sum of this infinite series after having read the series chapter of my textbook: $$sum_{n=1}^{infty}frac{1}{4n^2-1}$$



my steps:



$$sum_{n=1}^{infty}frac{1}{4n^2-1}=sum_{n=1}^{infty}frac{2}{4n^2-1}-sum_{n=1}^{infty}frac{1}{4n^2-1}=..help..=sum$$



I am lacking some important properties, I feel I am coming to the right step and cannot spit that out..










share|cite|improve this question











$endgroup$




I am trying to calculate the sum of this infinite series after having read the series chapter of my textbook: $$sum_{n=1}^{infty}frac{1}{4n^2-1}$$



my steps:



$$sum_{n=1}^{infty}frac{1}{4n^2-1}=sum_{n=1}^{infty}frac{2}{4n^2-1}-sum_{n=1}^{infty}frac{1}{4n^2-1}=..help..=sum$$



I am lacking some important properties, I feel I am coming to the right step and cannot spit that out..







sequences-and-series summation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jul 21 '16 at 14:18









Martin Sleziak

45k10122277




45k10122277










asked Dec 26 '12 at 10:43









doniyordoniyor

1,66242348




1,66242348








  • 1




    $begingroup$
    Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
    $endgroup$
    – Ofir
    Dec 26 '12 at 10:47








  • 1




    $begingroup$
    see math.stackexchange.com/questions/238728/finding-summation/…
    $endgroup$
    – MathOverview
    Dec 26 '12 at 10:48






  • 1




    $begingroup$
    @doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
    $endgroup$
    – Rustyn
    Dec 26 '12 at 10:55
















  • 1




    $begingroup$
    Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
    $endgroup$
    – Ofir
    Dec 26 '12 at 10:47








  • 1




    $begingroup$
    see math.stackexchange.com/questions/238728/finding-summation/…
    $endgroup$
    – MathOverview
    Dec 26 '12 at 10:48






  • 1




    $begingroup$
    @doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
    $endgroup$
    – Rustyn
    Dec 26 '12 at 10:55










1




1




$begingroup$
Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
$endgroup$
– Ofir
Dec 26 '12 at 10:47






$begingroup$
Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
$endgroup$
– Ofir
Dec 26 '12 at 10:47






1




1




$begingroup$
see math.stackexchange.com/questions/238728/finding-summation/…
$endgroup$
– MathOverview
Dec 26 '12 at 10:48




$begingroup$
see math.stackexchange.com/questions/238728/finding-summation/…
$endgroup$
– MathOverview
Dec 26 '12 at 10:48




1




1




$begingroup$
@doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
$endgroup$
– Rustyn
Dec 26 '12 at 10:55






$begingroup$
@doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
$endgroup$
– Rustyn
Dec 26 '12 at 10:55












5 Answers
5






active

oldest

votes


















5












$begingroup$

Hint: Partial Fraction decomposition:$$frac{1}{4n^2-1}=frac{1}{(2n-1)(2n+1)}=frac12[frac{1}{2n-1}-frac{1}{2n+1}]$$
You must then compute the closed form of
$$sum_{n=1}^k[frac{1}{2n-1}-frac{1}{2n+1}]$$
Can you do that?
Note that
$$sum_{n=1}^kfrac{1}{2n-1}=frac11+frac13+...+frac1{2k-1}=frac1{2cdot 0+1}+frac1{2cdot 1+1}+...+frac1{2(k-1)+1}=sum_{n=0}^{k-1}frac{1}{2n+1}=sum_{n=1}^{k}frac1{2n+1}+frac{1}{2cdot 0+1}-frac1{2k+1}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
    $endgroup$
    – doniyor
    Dec 26 '12 at 11:29










  • $begingroup$
    @doniyor Sure I can.
    $endgroup$
    – Nameless
    Dec 26 '12 at 11:29



















14












$begingroup$

Note $frac{1}{4n^2-1}=frac{1}{(2n+1)(2n-1)}={frac{1}{2}}timesfrac{(2n+1)-(2n-1)}{(2n+1)(2n-1)}={frac{1}{2}}times[frac{1}{2n-1}-frac{1}{2n+1}]$ for $ninmathbb N$



Let for $kinmathbb N,$ $S_k=sum_{n=1}^{k}frac{1}{4n^2-1}$ $implies S_k={frac{1}{2}}sum_{n=1}^{k}[frac{1}{2n-1}-frac{1}{2n+1}].$ Thus for $k=1,2,...$



$S_1={frac{1}{2}}sum_{n=1}^{1}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}(1-frac{1}{3})$



$S_2={frac{1}{2}}sum_{n=1}^{2}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})]=frac{1}{2}(1-frac{1}{5})$



$S_3={frac{1}{2}}sum_{n=1}^{3}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})+(frac{1}{5}-frac{1}{7})]=frac{1}{2}(1-frac{1}{7})$



...



$S_k=frac{1}{2}(1-frac{1}{2k+1})$



$impliessum_{n=1}^{infty}frac{1}{4n^2-1}=lim_{ktoinfty}S_k=frac{1}{2}.$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    great, thanks Sugata
    $endgroup$
    – doniyor
    Dec 26 '12 at 13:39










  • $begingroup$
    You're most welcome.
    $endgroup$
    – Sugata Adhya
    Dec 26 '12 at 13:41



















5












$begingroup$

Or we want to compute it fastly and use the formula
$$sum_{k=1}^infty frac1{k^2-x^2}=frac1{2x^2}-frac{picot,pi x}{2x}$$
where $x=frac{1}{2}$ because
$$sum_{k=1}^{infty}frac{1}{4k^2-1}=frac{1}{4}sum_{k=1}^{infty}frac{1}{k^2-left(frac{1}{2}right)^2}$$
Here you may find more information about this precious way.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @doniyor: you're welcome!
    $endgroup$
    – user 1357113
    Dec 26 '12 at 20:52



















3












$begingroup$

Hint: Work on $S_n=sum_{k=1}^nfrac{1}{4k^2-1}$ and take its limit when $ntoinfty$. Note that $$frac{1}{4n^2-1}=frac{1}{2(2n-1)}-frac{1}{2(2n+1)}$$






share|cite|improve this answer









$endgroup$









  • 1




    $begingroup$
    Why don't you experts leave such problems for beginners like us ? :(
    $endgroup$
    – Sugata Adhya
    Dec 26 '12 at 13:40










  • $begingroup$
    @SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
    $endgroup$
    – mrs
    Dec 26 '12 at 16:13










  • $begingroup$
    :), yeah, but you guys are doing wonderful job here.. thanks again for all you
    $endgroup$
    – doniyor
    Dec 26 '12 at 20:50










  • $begingroup$
    Yes, as dear doniyor says, you're doing a wonderful job here! +
    $endgroup$
    – Namaste
    Mar 2 '13 at 2:45



















0












$begingroup$

This is an easy problem by using Fourier's serie of $|sin(x)|$. So,
$|sin(x)|=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{cos(2nx)}{4n^2-1} $. By taking $x=0$, we obtain:



$0=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{1}{4n^2-1} $.



So,



$sum_{n=1}^{infty}dfrac{1}{4n^2-1}=dfrac12$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f265277%2fsum-of-this-series-sum-n-1-infty-frac14n2-1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    5 Answers
    5






    active

    oldest

    votes








    5 Answers
    5






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Hint: Partial Fraction decomposition:$$frac{1}{4n^2-1}=frac{1}{(2n-1)(2n+1)}=frac12[frac{1}{2n-1}-frac{1}{2n+1}]$$
    You must then compute the closed form of
    $$sum_{n=1}^k[frac{1}{2n-1}-frac{1}{2n+1}]$$
    Can you do that?
    Note that
    $$sum_{n=1}^kfrac{1}{2n-1}=frac11+frac13+...+frac1{2k-1}=frac1{2cdot 0+1}+frac1{2cdot 1+1}+...+frac1{2(k-1)+1}=sum_{n=0}^{k-1}frac{1}{2n+1}=sum_{n=1}^{k}frac1{2n+1}+frac{1}{2cdot 0+1}-frac1{2k+1}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
      $endgroup$
      – doniyor
      Dec 26 '12 at 11:29










    • $begingroup$
      @doniyor Sure I can.
      $endgroup$
      – Nameless
      Dec 26 '12 at 11:29
















    5












    $begingroup$

    Hint: Partial Fraction decomposition:$$frac{1}{4n^2-1}=frac{1}{(2n-1)(2n+1)}=frac12[frac{1}{2n-1}-frac{1}{2n+1}]$$
    You must then compute the closed form of
    $$sum_{n=1}^k[frac{1}{2n-1}-frac{1}{2n+1}]$$
    Can you do that?
    Note that
    $$sum_{n=1}^kfrac{1}{2n-1}=frac11+frac13+...+frac1{2k-1}=frac1{2cdot 0+1}+frac1{2cdot 1+1}+...+frac1{2(k-1)+1}=sum_{n=0}^{k-1}frac{1}{2n+1}=sum_{n=1}^{k}frac1{2n+1}+frac{1}{2cdot 0+1}-frac1{2k+1}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
      $endgroup$
      – doniyor
      Dec 26 '12 at 11:29










    • $begingroup$
      @doniyor Sure I can.
      $endgroup$
      – Nameless
      Dec 26 '12 at 11:29














    5












    5








    5





    $begingroup$

    Hint: Partial Fraction decomposition:$$frac{1}{4n^2-1}=frac{1}{(2n-1)(2n+1)}=frac12[frac{1}{2n-1}-frac{1}{2n+1}]$$
    You must then compute the closed form of
    $$sum_{n=1}^k[frac{1}{2n-1}-frac{1}{2n+1}]$$
    Can you do that?
    Note that
    $$sum_{n=1}^kfrac{1}{2n-1}=frac11+frac13+...+frac1{2k-1}=frac1{2cdot 0+1}+frac1{2cdot 1+1}+...+frac1{2(k-1)+1}=sum_{n=0}^{k-1}frac{1}{2n+1}=sum_{n=1}^{k}frac1{2n+1}+frac{1}{2cdot 0+1}-frac1{2k+1}$$






    share|cite|improve this answer











    $endgroup$



    Hint: Partial Fraction decomposition:$$frac{1}{4n^2-1}=frac{1}{(2n-1)(2n+1)}=frac12[frac{1}{2n-1}-frac{1}{2n+1}]$$
    You must then compute the closed form of
    $$sum_{n=1}^k[frac{1}{2n-1}-frac{1}{2n+1}]$$
    Can you do that?
    Note that
    $$sum_{n=1}^kfrac{1}{2n-1}=frac11+frac13+...+frac1{2k-1}=frac1{2cdot 0+1}+frac1{2cdot 1+1}+...+frac1{2(k-1)+1}=sum_{n=0}^{k-1}frac{1}{2n+1}=sum_{n=1}^{k}frac1{2n+1}+frac{1}{2cdot 0+1}-frac1{2k+1}$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 26 '12 at 11:31

























    answered Dec 26 '12 at 10:51









    NamelessNameless

    10.5k12255




    10.5k12255












    • $begingroup$
      can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
      $endgroup$
      – doniyor
      Dec 26 '12 at 11:29










    • $begingroup$
      @doniyor Sure I can.
      $endgroup$
      – Nameless
      Dec 26 '12 at 11:29


















    • $begingroup$
      can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
      $endgroup$
      – doniyor
      Dec 26 '12 at 11:29










    • $begingroup$
      @doniyor Sure I can.
      $endgroup$
      – Nameless
      Dec 26 '12 at 11:29
















    $begingroup$
    can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
    $endgroup$
    – doniyor
    Dec 26 '12 at 11:29




    $begingroup$
    can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
    $endgroup$
    – doniyor
    Dec 26 '12 at 11:29












    $begingroup$
    @doniyor Sure I can.
    $endgroup$
    – Nameless
    Dec 26 '12 at 11:29




    $begingroup$
    @doniyor Sure I can.
    $endgroup$
    – Nameless
    Dec 26 '12 at 11:29











    14












    $begingroup$

    Note $frac{1}{4n^2-1}=frac{1}{(2n+1)(2n-1)}={frac{1}{2}}timesfrac{(2n+1)-(2n-1)}{(2n+1)(2n-1)}={frac{1}{2}}times[frac{1}{2n-1}-frac{1}{2n+1}]$ for $ninmathbb N$



    Let for $kinmathbb N,$ $S_k=sum_{n=1}^{k}frac{1}{4n^2-1}$ $implies S_k={frac{1}{2}}sum_{n=1}^{k}[frac{1}{2n-1}-frac{1}{2n+1}].$ Thus for $k=1,2,...$



    $S_1={frac{1}{2}}sum_{n=1}^{1}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}(1-frac{1}{3})$



    $S_2={frac{1}{2}}sum_{n=1}^{2}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})]=frac{1}{2}(1-frac{1}{5})$



    $S_3={frac{1}{2}}sum_{n=1}^{3}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})+(frac{1}{5}-frac{1}{7})]=frac{1}{2}(1-frac{1}{7})$



    ...



    $S_k=frac{1}{2}(1-frac{1}{2k+1})$



    $impliessum_{n=1}^{infty}frac{1}{4n^2-1}=lim_{ktoinfty}S_k=frac{1}{2}.$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      great, thanks Sugata
      $endgroup$
      – doniyor
      Dec 26 '12 at 13:39










    • $begingroup$
      You're most welcome.
      $endgroup$
      – Sugata Adhya
      Dec 26 '12 at 13:41
















    14












    $begingroup$

    Note $frac{1}{4n^2-1}=frac{1}{(2n+1)(2n-1)}={frac{1}{2}}timesfrac{(2n+1)-(2n-1)}{(2n+1)(2n-1)}={frac{1}{2}}times[frac{1}{2n-1}-frac{1}{2n+1}]$ for $ninmathbb N$



    Let for $kinmathbb N,$ $S_k=sum_{n=1}^{k}frac{1}{4n^2-1}$ $implies S_k={frac{1}{2}}sum_{n=1}^{k}[frac{1}{2n-1}-frac{1}{2n+1}].$ Thus for $k=1,2,...$



    $S_1={frac{1}{2}}sum_{n=1}^{1}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}(1-frac{1}{3})$



    $S_2={frac{1}{2}}sum_{n=1}^{2}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})]=frac{1}{2}(1-frac{1}{5})$



    $S_3={frac{1}{2}}sum_{n=1}^{3}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})+(frac{1}{5}-frac{1}{7})]=frac{1}{2}(1-frac{1}{7})$



    ...



    $S_k=frac{1}{2}(1-frac{1}{2k+1})$



    $impliessum_{n=1}^{infty}frac{1}{4n^2-1}=lim_{ktoinfty}S_k=frac{1}{2}.$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      great, thanks Sugata
      $endgroup$
      – doniyor
      Dec 26 '12 at 13:39










    • $begingroup$
      You're most welcome.
      $endgroup$
      – Sugata Adhya
      Dec 26 '12 at 13:41














    14












    14








    14





    $begingroup$

    Note $frac{1}{4n^2-1}=frac{1}{(2n+1)(2n-1)}={frac{1}{2}}timesfrac{(2n+1)-(2n-1)}{(2n+1)(2n-1)}={frac{1}{2}}times[frac{1}{2n-1}-frac{1}{2n+1}]$ for $ninmathbb N$



    Let for $kinmathbb N,$ $S_k=sum_{n=1}^{k}frac{1}{4n^2-1}$ $implies S_k={frac{1}{2}}sum_{n=1}^{k}[frac{1}{2n-1}-frac{1}{2n+1}].$ Thus for $k=1,2,...$



    $S_1={frac{1}{2}}sum_{n=1}^{1}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}(1-frac{1}{3})$



    $S_2={frac{1}{2}}sum_{n=1}^{2}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})]=frac{1}{2}(1-frac{1}{5})$



    $S_3={frac{1}{2}}sum_{n=1}^{3}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})+(frac{1}{5}-frac{1}{7})]=frac{1}{2}(1-frac{1}{7})$



    ...



    $S_k=frac{1}{2}(1-frac{1}{2k+1})$



    $impliessum_{n=1}^{infty}frac{1}{4n^2-1}=lim_{ktoinfty}S_k=frac{1}{2}.$






    share|cite|improve this answer









    $endgroup$



    Note $frac{1}{4n^2-1}=frac{1}{(2n+1)(2n-1)}={frac{1}{2}}timesfrac{(2n+1)-(2n-1)}{(2n+1)(2n-1)}={frac{1}{2}}times[frac{1}{2n-1}-frac{1}{2n+1}]$ for $ninmathbb N$



    Let for $kinmathbb N,$ $S_k=sum_{n=1}^{k}frac{1}{4n^2-1}$ $implies S_k={frac{1}{2}}sum_{n=1}^{k}[frac{1}{2n-1}-frac{1}{2n+1}].$ Thus for $k=1,2,...$



    $S_1={frac{1}{2}}sum_{n=1}^{1}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}(1-frac{1}{3})$



    $S_2={frac{1}{2}}sum_{n=1}^{2}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})]=frac{1}{2}(1-frac{1}{5})$



    $S_3={frac{1}{2}}sum_{n=1}^{3}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})+(frac{1}{5}-frac{1}{7})]=frac{1}{2}(1-frac{1}{7})$



    ...



    $S_k=frac{1}{2}(1-frac{1}{2k+1})$



    $impliessum_{n=1}^{infty}frac{1}{4n^2-1}=lim_{ktoinfty}S_k=frac{1}{2}.$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 26 '12 at 13:30









    Sugata AdhyaSugata Adhya

    3,0221224




    3,0221224












    • $begingroup$
      great, thanks Sugata
      $endgroup$
      – doniyor
      Dec 26 '12 at 13:39










    • $begingroup$
      You're most welcome.
      $endgroup$
      – Sugata Adhya
      Dec 26 '12 at 13:41


















    • $begingroup$
      great, thanks Sugata
      $endgroup$
      – doniyor
      Dec 26 '12 at 13:39










    • $begingroup$
      You're most welcome.
      $endgroup$
      – Sugata Adhya
      Dec 26 '12 at 13:41
















    $begingroup$
    great, thanks Sugata
    $endgroup$
    – doniyor
    Dec 26 '12 at 13:39




    $begingroup$
    great, thanks Sugata
    $endgroup$
    – doniyor
    Dec 26 '12 at 13:39












    $begingroup$
    You're most welcome.
    $endgroup$
    – Sugata Adhya
    Dec 26 '12 at 13:41




    $begingroup$
    You're most welcome.
    $endgroup$
    – Sugata Adhya
    Dec 26 '12 at 13:41











    5












    $begingroup$

    Or we want to compute it fastly and use the formula
    $$sum_{k=1}^infty frac1{k^2-x^2}=frac1{2x^2}-frac{picot,pi x}{2x}$$
    where $x=frac{1}{2}$ because
    $$sum_{k=1}^{infty}frac{1}{4k^2-1}=frac{1}{4}sum_{k=1}^{infty}frac{1}{k^2-left(frac{1}{2}right)^2}$$
    Here you may find more information about this precious way.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      @doniyor: you're welcome!
      $endgroup$
      – user 1357113
      Dec 26 '12 at 20:52
















    5












    $begingroup$

    Or we want to compute it fastly and use the formula
    $$sum_{k=1}^infty frac1{k^2-x^2}=frac1{2x^2}-frac{picot,pi x}{2x}$$
    where $x=frac{1}{2}$ because
    $$sum_{k=1}^{infty}frac{1}{4k^2-1}=frac{1}{4}sum_{k=1}^{infty}frac{1}{k^2-left(frac{1}{2}right)^2}$$
    Here you may find more information about this precious way.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      @doniyor: you're welcome!
      $endgroup$
      – user 1357113
      Dec 26 '12 at 20:52














    5












    5








    5





    $begingroup$

    Or we want to compute it fastly and use the formula
    $$sum_{k=1}^infty frac1{k^2-x^2}=frac1{2x^2}-frac{picot,pi x}{2x}$$
    where $x=frac{1}{2}$ because
    $$sum_{k=1}^{infty}frac{1}{4k^2-1}=frac{1}{4}sum_{k=1}^{infty}frac{1}{k^2-left(frac{1}{2}right)^2}$$
    Here you may find more information about this precious way.






    share|cite|improve this answer











    $endgroup$



    Or we want to compute it fastly and use the formula
    $$sum_{k=1}^infty frac1{k^2-x^2}=frac1{2x^2}-frac{picot,pi x}{2x}$$
    where $x=frac{1}{2}$ because
    $$sum_{k=1}^{infty}frac{1}{4k^2-1}=frac{1}{4}sum_{k=1}^{infty}frac{1}{k^2-left(frac{1}{2}right)^2}$$
    Here you may find more information about this precious way.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Apr 13 '17 at 12:21









    Community

    1




    1










    answered Dec 26 '12 at 19:57









    user 1357113user 1357113

    22.5k878227




    22.5k878227












    • $begingroup$
      @doniyor: you're welcome!
      $endgroup$
      – user 1357113
      Dec 26 '12 at 20:52


















    • $begingroup$
      @doniyor: you're welcome!
      $endgroup$
      – user 1357113
      Dec 26 '12 at 20:52
















    $begingroup$
    @doniyor: you're welcome!
    $endgroup$
    – user 1357113
    Dec 26 '12 at 20:52




    $begingroup$
    @doniyor: you're welcome!
    $endgroup$
    – user 1357113
    Dec 26 '12 at 20:52











    3












    $begingroup$

    Hint: Work on $S_n=sum_{k=1}^nfrac{1}{4k^2-1}$ and take its limit when $ntoinfty$. Note that $$frac{1}{4n^2-1}=frac{1}{2(2n-1)}-frac{1}{2(2n+1)}$$






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Why don't you experts leave such problems for beginners like us ? :(
      $endgroup$
      – Sugata Adhya
      Dec 26 '12 at 13:40










    • $begingroup$
      @SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
      $endgroup$
      – mrs
      Dec 26 '12 at 16:13










    • $begingroup$
      :), yeah, but you guys are doing wonderful job here.. thanks again for all you
      $endgroup$
      – doniyor
      Dec 26 '12 at 20:50










    • $begingroup$
      Yes, as dear doniyor says, you're doing a wonderful job here! +
      $endgroup$
      – Namaste
      Mar 2 '13 at 2:45
















    3












    $begingroup$

    Hint: Work on $S_n=sum_{k=1}^nfrac{1}{4k^2-1}$ and take its limit when $ntoinfty$. Note that $$frac{1}{4n^2-1}=frac{1}{2(2n-1)}-frac{1}{2(2n+1)}$$






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      Why don't you experts leave such problems for beginners like us ? :(
      $endgroup$
      – Sugata Adhya
      Dec 26 '12 at 13:40










    • $begingroup$
      @SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
      $endgroup$
      – mrs
      Dec 26 '12 at 16:13










    • $begingroup$
      :), yeah, but you guys are doing wonderful job here.. thanks again for all you
      $endgroup$
      – doniyor
      Dec 26 '12 at 20:50










    • $begingroup$
      Yes, as dear doniyor says, you're doing a wonderful job here! +
      $endgroup$
      – Namaste
      Mar 2 '13 at 2:45














    3












    3








    3





    $begingroup$

    Hint: Work on $S_n=sum_{k=1}^nfrac{1}{4k^2-1}$ and take its limit when $ntoinfty$. Note that $$frac{1}{4n^2-1}=frac{1}{2(2n-1)}-frac{1}{2(2n+1)}$$






    share|cite|improve this answer









    $endgroup$



    Hint: Work on $S_n=sum_{k=1}^nfrac{1}{4k^2-1}$ and take its limit when $ntoinfty$. Note that $$frac{1}{4n^2-1}=frac{1}{2(2n-1)}-frac{1}{2(2n+1)}$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 26 '12 at 10:50









    mrsmrs

    1




    1








    • 1




      $begingroup$
      Why don't you experts leave such problems for beginners like us ? :(
      $endgroup$
      – Sugata Adhya
      Dec 26 '12 at 13:40










    • $begingroup$
      @SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
      $endgroup$
      – mrs
      Dec 26 '12 at 16:13










    • $begingroup$
      :), yeah, but you guys are doing wonderful job here.. thanks again for all you
      $endgroup$
      – doniyor
      Dec 26 '12 at 20:50










    • $begingroup$
      Yes, as dear doniyor says, you're doing a wonderful job here! +
      $endgroup$
      – Namaste
      Mar 2 '13 at 2:45














    • 1




      $begingroup$
      Why don't you experts leave such problems for beginners like us ? :(
      $endgroup$
      – Sugata Adhya
      Dec 26 '12 at 13:40










    • $begingroup$
      @SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
      $endgroup$
      – mrs
      Dec 26 '12 at 16:13










    • $begingroup$
      :), yeah, but you guys are doing wonderful job here.. thanks again for all you
      $endgroup$
      – doniyor
      Dec 26 '12 at 20:50










    • $begingroup$
      Yes, as dear doniyor says, you're doing a wonderful job here! +
      $endgroup$
      – Namaste
      Mar 2 '13 at 2:45








    1




    1




    $begingroup$
    Why don't you experts leave such problems for beginners like us ? :(
    $endgroup$
    – Sugata Adhya
    Dec 26 '12 at 13:40




    $begingroup$
    Why don't you experts leave such problems for beginners like us ? :(
    $endgroup$
    – Sugata Adhya
    Dec 26 '12 at 13:40












    $begingroup$
    @SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
    $endgroup$
    – mrs
    Dec 26 '12 at 16:13




    $begingroup$
    @SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
    $endgroup$
    – mrs
    Dec 26 '12 at 16:13












    $begingroup$
    :), yeah, but you guys are doing wonderful job here.. thanks again for all you
    $endgroup$
    – doniyor
    Dec 26 '12 at 20:50




    $begingroup$
    :), yeah, but you guys are doing wonderful job here.. thanks again for all you
    $endgroup$
    – doniyor
    Dec 26 '12 at 20:50












    $begingroup$
    Yes, as dear doniyor says, you're doing a wonderful job here! +
    $endgroup$
    – Namaste
    Mar 2 '13 at 2:45




    $begingroup$
    Yes, as dear doniyor says, you're doing a wonderful job here! +
    $endgroup$
    – Namaste
    Mar 2 '13 at 2:45











    0












    $begingroup$

    This is an easy problem by using Fourier's serie of $|sin(x)|$. So,
    $|sin(x)|=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{cos(2nx)}{4n^2-1} $. By taking $x=0$, we obtain:



    $0=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{1}{4n^2-1} $.



    So,



    $sum_{n=1}^{infty}dfrac{1}{4n^2-1}=dfrac12$






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      This is an easy problem by using Fourier's serie of $|sin(x)|$. So,
      $|sin(x)|=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{cos(2nx)}{4n^2-1} $. By taking $x=0$, we obtain:



      $0=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{1}{4n^2-1} $.



      So,



      $sum_{n=1}^{infty}dfrac{1}{4n^2-1}=dfrac12$






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        This is an easy problem by using Fourier's serie of $|sin(x)|$. So,
        $|sin(x)|=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{cos(2nx)}{4n^2-1} $. By taking $x=0$, we obtain:



        $0=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{1}{4n^2-1} $.



        So,



        $sum_{n=1}^{infty}dfrac{1}{4n^2-1}=dfrac12$






        share|cite|improve this answer









        $endgroup$



        This is an easy problem by using Fourier's serie of $|sin(x)|$. So,
        $|sin(x)|=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{cos(2nx)}{4n^2-1} $. By taking $x=0$, we obtain:



        $0=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{1}{4n^2-1} $.



        So,



        $sum_{n=1}^{infty}dfrac{1}{4n^2-1}=dfrac12$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 14 '18 at 18:13









        Toni Van Hul MirallesToni Van Hul Miralles

        1




        1






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f265277%2fsum-of-this-series-sum-n-1-infty-frac14n2-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

            Can I use Tabulator js library in my java Spring + Thymeleaf project?