sum of this series: $sum_{n=1}^{infty}frac{1}{4n^2-1}$
$begingroup$
I am trying to calculate the sum of this infinite series after having read the series chapter of my textbook: $$sum_{n=1}^{infty}frac{1}{4n^2-1}$$
my steps:
$$sum_{n=1}^{infty}frac{1}{4n^2-1}=sum_{n=1}^{infty}frac{2}{4n^2-1}-sum_{n=1}^{infty}frac{1}{4n^2-1}=..help..=sum$$
I am lacking some important properties, I feel I am coming to the right step and cannot spit that out..
sequences-and-series summation
$endgroup$
add a comment |
$begingroup$
I am trying to calculate the sum of this infinite series after having read the series chapter of my textbook: $$sum_{n=1}^{infty}frac{1}{4n^2-1}$$
my steps:
$$sum_{n=1}^{infty}frac{1}{4n^2-1}=sum_{n=1}^{infty}frac{2}{4n^2-1}-sum_{n=1}^{infty}frac{1}{4n^2-1}=..help..=sum$$
I am lacking some important properties, I feel I am coming to the right step and cannot spit that out..
sequences-and-series summation
$endgroup$
1
$begingroup$
Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
$endgroup$
– Ofir
Dec 26 '12 at 10:47
1
$begingroup$
see math.stackexchange.com/questions/238728/finding-summation/…
$endgroup$
– MathOverview
Dec 26 '12 at 10:48
1
$begingroup$
@doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
$endgroup$
– Rustyn
Dec 26 '12 at 10:55
add a comment |
$begingroup$
I am trying to calculate the sum of this infinite series after having read the series chapter of my textbook: $$sum_{n=1}^{infty}frac{1}{4n^2-1}$$
my steps:
$$sum_{n=1}^{infty}frac{1}{4n^2-1}=sum_{n=1}^{infty}frac{2}{4n^2-1}-sum_{n=1}^{infty}frac{1}{4n^2-1}=..help..=sum$$
I am lacking some important properties, I feel I am coming to the right step and cannot spit that out..
sequences-and-series summation
$endgroup$
I am trying to calculate the sum of this infinite series after having read the series chapter of my textbook: $$sum_{n=1}^{infty}frac{1}{4n^2-1}$$
my steps:
$$sum_{n=1}^{infty}frac{1}{4n^2-1}=sum_{n=1}^{infty}frac{2}{4n^2-1}-sum_{n=1}^{infty}frac{1}{4n^2-1}=..help..=sum$$
I am lacking some important properties, I feel I am coming to the right step and cannot spit that out..
sequences-and-series summation
sequences-and-series summation
edited Jul 21 '16 at 14:18
Martin Sleziak
45k10122277
45k10122277
asked Dec 26 '12 at 10:43
doniyordoniyor
1,66242348
1,66242348
1
$begingroup$
Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
$endgroup$
– Ofir
Dec 26 '12 at 10:47
1
$begingroup$
see math.stackexchange.com/questions/238728/finding-summation/…
$endgroup$
– MathOverview
Dec 26 '12 at 10:48
1
$begingroup$
@doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
$endgroup$
– Rustyn
Dec 26 '12 at 10:55
add a comment |
1
$begingroup$
Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
$endgroup$
– Ofir
Dec 26 '12 at 10:47
1
$begingroup$
see math.stackexchange.com/questions/238728/finding-summation/…
$endgroup$
– MathOverview
Dec 26 '12 at 10:48
1
$begingroup$
@doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
$endgroup$
– Rustyn
Dec 26 '12 at 10:55
1
1
$begingroup$
Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
$endgroup$
– Ofir
Dec 26 '12 at 10:47
$begingroup$
Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
$endgroup$
– Ofir
Dec 26 '12 at 10:47
1
1
$begingroup$
see math.stackexchange.com/questions/238728/finding-summation/…
$endgroup$
– MathOverview
Dec 26 '12 at 10:48
$begingroup$
see math.stackexchange.com/questions/238728/finding-summation/…
$endgroup$
– MathOverview
Dec 26 '12 at 10:48
1
1
$begingroup$
@doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
$endgroup$
– Rustyn
Dec 26 '12 at 10:55
$begingroup$
@doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
$endgroup$
– Rustyn
Dec 26 '12 at 10:55
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
Hint: Partial Fraction decomposition:$$frac{1}{4n^2-1}=frac{1}{(2n-1)(2n+1)}=frac12[frac{1}{2n-1}-frac{1}{2n+1}]$$
You must then compute the closed form of
$$sum_{n=1}^k[frac{1}{2n-1}-frac{1}{2n+1}]$$
Can you do that?
Note that
$$sum_{n=1}^kfrac{1}{2n-1}=frac11+frac13+...+frac1{2k-1}=frac1{2cdot 0+1}+frac1{2cdot 1+1}+...+frac1{2(k-1)+1}=sum_{n=0}^{k-1}frac{1}{2n+1}=sum_{n=1}^{k}frac1{2n+1}+frac{1}{2cdot 0+1}-frac1{2k+1}$$
$endgroup$
$begingroup$
can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
$endgroup$
– doniyor
Dec 26 '12 at 11:29
$begingroup$
@doniyor Sure I can.
$endgroup$
– Nameless
Dec 26 '12 at 11:29
add a comment |
$begingroup$
Note $frac{1}{4n^2-1}=frac{1}{(2n+1)(2n-1)}={frac{1}{2}}timesfrac{(2n+1)-(2n-1)}{(2n+1)(2n-1)}={frac{1}{2}}times[frac{1}{2n-1}-frac{1}{2n+1}]$ for $ninmathbb N$
Let for $kinmathbb N,$ $S_k=sum_{n=1}^{k}frac{1}{4n^2-1}$ $implies S_k={frac{1}{2}}sum_{n=1}^{k}[frac{1}{2n-1}-frac{1}{2n+1}].$ Thus for $k=1,2,...$
$S_1={frac{1}{2}}sum_{n=1}^{1}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}(1-frac{1}{3})$
$S_2={frac{1}{2}}sum_{n=1}^{2}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})]=frac{1}{2}(1-frac{1}{5})$
$S_3={frac{1}{2}}sum_{n=1}^{3}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})+(frac{1}{5}-frac{1}{7})]=frac{1}{2}(1-frac{1}{7})$
...
$S_k=frac{1}{2}(1-frac{1}{2k+1})$
$impliessum_{n=1}^{infty}frac{1}{4n^2-1}=lim_{ktoinfty}S_k=frac{1}{2}.$
$endgroup$
$begingroup$
great, thanks Sugata
$endgroup$
– doniyor
Dec 26 '12 at 13:39
$begingroup$
You're most welcome.
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:41
add a comment |
$begingroup$
Or we want to compute it fastly and use the formula
$$sum_{k=1}^infty frac1{k^2-x^2}=frac1{2x^2}-frac{picot,pi x}{2x}$$
where $x=frac{1}{2}$ because
$$sum_{k=1}^{infty}frac{1}{4k^2-1}=frac{1}{4}sum_{k=1}^{infty}frac{1}{k^2-left(frac{1}{2}right)^2}$$
Here you may find more information about this precious way.
$endgroup$
$begingroup$
@doniyor: you're welcome!
$endgroup$
– user 1357113
Dec 26 '12 at 20:52
add a comment |
$begingroup$
Hint: Work on $S_n=sum_{k=1}^nfrac{1}{4k^2-1}$ and take its limit when $ntoinfty$. Note that $$frac{1}{4n^2-1}=frac{1}{2(2n-1)}-frac{1}{2(2n+1)}$$
$endgroup$
1
$begingroup$
Why don't you experts leave such problems for beginners like us ? :(
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:40
$begingroup$
@SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
$endgroup$
– mrs
Dec 26 '12 at 16:13
$begingroup$
:), yeah, but you guys are doing wonderful job here.. thanks again for all you
$endgroup$
– doniyor
Dec 26 '12 at 20:50
$begingroup$
Yes, as dear doniyor says, you're doing a wonderful job here! +
$endgroup$
– Namaste
Mar 2 '13 at 2:45
add a comment |
$begingroup$
This is an easy problem by using Fourier's serie of $|sin(x)|$. So,
$|sin(x)|=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{cos(2nx)}{4n^2-1} $. By taking $x=0$, we obtain:
$0=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{1}{4n^2-1} $.
So,
$sum_{n=1}^{infty}dfrac{1}{4n^2-1}=dfrac12$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f265277%2fsum-of-this-series-sum-n-1-infty-frac14n2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Partial Fraction decomposition:$$frac{1}{4n^2-1}=frac{1}{(2n-1)(2n+1)}=frac12[frac{1}{2n-1}-frac{1}{2n+1}]$$
You must then compute the closed form of
$$sum_{n=1}^k[frac{1}{2n-1}-frac{1}{2n+1}]$$
Can you do that?
Note that
$$sum_{n=1}^kfrac{1}{2n-1}=frac11+frac13+...+frac1{2k-1}=frac1{2cdot 0+1}+frac1{2cdot 1+1}+...+frac1{2(k-1)+1}=sum_{n=0}^{k-1}frac{1}{2n+1}=sum_{n=1}^{k}frac1{2n+1}+frac{1}{2cdot 0+1}-frac1{2k+1}$$
$endgroup$
$begingroup$
can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
$endgroup$
– doniyor
Dec 26 '12 at 11:29
$begingroup$
@doniyor Sure I can.
$endgroup$
– Nameless
Dec 26 '12 at 11:29
add a comment |
$begingroup$
Hint: Partial Fraction decomposition:$$frac{1}{4n^2-1}=frac{1}{(2n-1)(2n+1)}=frac12[frac{1}{2n-1}-frac{1}{2n+1}]$$
You must then compute the closed form of
$$sum_{n=1}^k[frac{1}{2n-1}-frac{1}{2n+1}]$$
Can you do that?
Note that
$$sum_{n=1}^kfrac{1}{2n-1}=frac11+frac13+...+frac1{2k-1}=frac1{2cdot 0+1}+frac1{2cdot 1+1}+...+frac1{2(k-1)+1}=sum_{n=0}^{k-1}frac{1}{2n+1}=sum_{n=1}^{k}frac1{2n+1}+frac{1}{2cdot 0+1}-frac1{2k+1}$$
$endgroup$
$begingroup$
can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
$endgroup$
– doniyor
Dec 26 '12 at 11:29
$begingroup$
@doniyor Sure I can.
$endgroup$
– Nameless
Dec 26 '12 at 11:29
add a comment |
$begingroup$
Hint: Partial Fraction decomposition:$$frac{1}{4n^2-1}=frac{1}{(2n-1)(2n+1)}=frac12[frac{1}{2n-1}-frac{1}{2n+1}]$$
You must then compute the closed form of
$$sum_{n=1}^k[frac{1}{2n-1}-frac{1}{2n+1}]$$
Can you do that?
Note that
$$sum_{n=1}^kfrac{1}{2n-1}=frac11+frac13+...+frac1{2k-1}=frac1{2cdot 0+1}+frac1{2cdot 1+1}+...+frac1{2(k-1)+1}=sum_{n=0}^{k-1}frac{1}{2n+1}=sum_{n=1}^{k}frac1{2n+1}+frac{1}{2cdot 0+1}-frac1{2k+1}$$
$endgroup$
Hint: Partial Fraction decomposition:$$frac{1}{4n^2-1}=frac{1}{(2n-1)(2n+1)}=frac12[frac{1}{2n-1}-frac{1}{2n+1}]$$
You must then compute the closed form of
$$sum_{n=1}^k[frac{1}{2n-1}-frac{1}{2n+1}]$$
Can you do that?
Note that
$$sum_{n=1}^kfrac{1}{2n-1}=frac11+frac13+...+frac1{2k-1}=frac1{2cdot 0+1}+frac1{2cdot 1+1}+...+frac1{2(k-1)+1}=sum_{n=0}^{k-1}frac{1}{2n+1}=sum_{n=1}^{k}frac1{2n+1}+frac{1}{2cdot 0+1}-frac1{2k+1}$$
edited Dec 26 '12 at 11:31
answered Dec 26 '12 at 10:51
NamelessNameless
10.5k12255
10.5k12255
$begingroup$
can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
$endgroup$
– doniyor
Dec 26 '12 at 11:29
$begingroup$
@doniyor Sure I can.
$endgroup$
– Nameless
Dec 26 '12 at 11:29
add a comment |
$begingroup$
can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
$endgroup$
– doniyor
Dec 26 '12 at 11:29
$begingroup$
@doniyor Sure I can.
$endgroup$
– Nameless
Dec 26 '12 at 11:29
$begingroup$
can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
$endgroup$
– doniyor
Dec 26 '12 at 11:29
$begingroup$
can you pls expand this step? $sum_{n=1}^kfrac{1}{2n-1}=sum_{n=0}^{k-1}frac{1}{2n+1}$
$endgroup$
– doniyor
Dec 26 '12 at 11:29
$begingroup$
@doniyor Sure I can.
$endgroup$
– Nameless
Dec 26 '12 at 11:29
$begingroup$
@doniyor Sure I can.
$endgroup$
– Nameless
Dec 26 '12 at 11:29
add a comment |
$begingroup$
Note $frac{1}{4n^2-1}=frac{1}{(2n+1)(2n-1)}={frac{1}{2}}timesfrac{(2n+1)-(2n-1)}{(2n+1)(2n-1)}={frac{1}{2}}times[frac{1}{2n-1}-frac{1}{2n+1}]$ for $ninmathbb N$
Let for $kinmathbb N,$ $S_k=sum_{n=1}^{k}frac{1}{4n^2-1}$ $implies S_k={frac{1}{2}}sum_{n=1}^{k}[frac{1}{2n-1}-frac{1}{2n+1}].$ Thus for $k=1,2,...$
$S_1={frac{1}{2}}sum_{n=1}^{1}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}(1-frac{1}{3})$
$S_2={frac{1}{2}}sum_{n=1}^{2}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})]=frac{1}{2}(1-frac{1}{5})$
$S_3={frac{1}{2}}sum_{n=1}^{3}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})+(frac{1}{5}-frac{1}{7})]=frac{1}{2}(1-frac{1}{7})$
...
$S_k=frac{1}{2}(1-frac{1}{2k+1})$
$impliessum_{n=1}^{infty}frac{1}{4n^2-1}=lim_{ktoinfty}S_k=frac{1}{2}.$
$endgroup$
$begingroup$
great, thanks Sugata
$endgroup$
– doniyor
Dec 26 '12 at 13:39
$begingroup$
You're most welcome.
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:41
add a comment |
$begingroup$
Note $frac{1}{4n^2-1}=frac{1}{(2n+1)(2n-1)}={frac{1}{2}}timesfrac{(2n+1)-(2n-1)}{(2n+1)(2n-1)}={frac{1}{2}}times[frac{1}{2n-1}-frac{1}{2n+1}]$ for $ninmathbb N$
Let for $kinmathbb N,$ $S_k=sum_{n=1}^{k}frac{1}{4n^2-1}$ $implies S_k={frac{1}{2}}sum_{n=1}^{k}[frac{1}{2n-1}-frac{1}{2n+1}].$ Thus for $k=1,2,...$
$S_1={frac{1}{2}}sum_{n=1}^{1}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}(1-frac{1}{3})$
$S_2={frac{1}{2}}sum_{n=1}^{2}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})]=frac{1}{2}(1-frac{1}{5})$
$S_3={frac{1}{2}}sum_{n=1}^{3}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})+(frac{1}{5}-frac{1}{7})]=frac{1}{2}(1-frac{1}{7})$
...
$S_k=frac{1}{2}(1-frac{1}{2k+1})$
$impliessum_{n=1}^{infty}frac{1}{4n^2-1}=lim_{ktoinfty}S_k=frac{1}{2}.$
$endgroup$
$begingroup$
great, thanks Sugata
$endgroup$
– doniyor
Dec 26 '12 at 13:39
$begingroup$
You're most welcome.
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:41
add a comment |
$begingroup$
Note $frac{1}{4n^2-1}=frac{1}{(2n+1)(2n-1)}={frac{1}{2}}timesfrac{(2n+1)-(2n-1)}{(2n+1)(2n-1)}={frac{1}{2}}times[frac{1}{2n-1}-frac{1}{2n+1}]$ for $ninmathbb N$
Let for $kinmathbb N,$ $S_k=sum_{n=1}^{k}frac{1}{4n^2-1}$ $implies S_k={frac{1}{2}}sum_{n=1}^{k}[frac{1}{2n-1}-frac{1}{2n+1}].$ Thus for $k=1,2,...$
$S_1={frac{1}{2}}sum_{n=1}^{1}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}(1-frac{1}{3})$
$S_2={frac{1}{2}}sum_{n=1}^{2}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})]=frac{1}{2}(1-frac{1}{5})$
$S_3={frac{1}{2}}sum_{n=1}^{3}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})+(frac{1}{5}-frac{1}{7})]=frac{1}{2}(1-frac{1}{7})$
...
$S_k=frac{1}{2}(1-frac{1}{2k+1})$
$impliessum_{n=1}^{infty}frac{1}{4n^2-1}=lim_{ktoinfty}S_k=frac{1}{2}.$
$endgroup$
Note $frac{1}{4n^2-1}=frac{1}{(2n+1)(2n-1)}={frac{1}{2}}timesfrac{(2n+1)-(2n-1)}{(2n+1)(2n-1)}={frac{1}{2}}times[frac{1}{2n-1}-frac{1}{2n+1}]$ for $ninmathbb N$
Let for $kinmathbb N,$ $S_k=sum_{n=1}^{k}frac{1}{4n^2-1}$ $implies S_k={frac{1}{2}}sum_{n=1}^{k}[frac{1}{2n-1}-frac{1}{2n+1}].$ Thus for $k=1,2,...$
$S_1={frac{1}{2}}sum_{n=1}^{1}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}(1-frac{1}{3})$
$S_2={frac{1}{2}}sum_{n=1}^{2}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})]=frac{1}{2}(1-frac{1}{5})$
$S_3={frac{1}{2}}sum_{n=1}^{3}[frac{1}{2n-1}-frac{1}{2n+1}]=frac{1}{2}[(1-frac{1}{3})+(frac{1}{3}-frac{1}{5})+(frac{1}{5}-frac{1}{7})]=frac{1}{2}(1-frac{1}{7})$
...
$S_k=frac{1}{2}(1-frac{1}{2k+1})$
$impliessum_{n=1}^{infty}frac{1}{4n^2-1}=lim_{ktoinfty}S_k=frac{1}{2}.$
answered Dec 26 '12 at 13:30
Sugata AdhyaSugata Adhya
3,0221224
3,0221224
$begingroup$
great, thanks Sugata
$endgroup$
– doniyor
Dec 26 '12 at 13:39
$begingroup$
You're most welcome.
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:41
add a comment |
$begingroup$
great, thanks Sugata
$endgroup$
– doniyor
Dec 26 '12 at 13:39
$begingroup$
You're most welcome.
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:41
$begingroup$
great, thanks Sugata
$endgroup$
– doniyor
Dec 26 '12 at 13:39
$begingroup$
great, thanks Sugata
$endgroup$
– doniyor
Dec 26 '12 at 13:39
$begingroup$
You're most welcome.
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:41
$begingroup$
You're most welcome.
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:41
add a comment |
$begingroup$
Or we want to compute it fastly and use the formula
$$sum_{k=1}^infty frac1{k^2-x^2}=frac1{2x^2}-frac{picot,pi x}{2x}$$
where $x=frac{1}{2}$ because
$$sum_{k=1}^{infty}frac{1}{4k^2-1}=frac{1}{4}sum_{k=1}^{infty}frac{1}{k^2-left(frac{1}{2}right)^2}$$
Here you may find more information about this precious way.
$endgroup$
$begingroup$
@doniyor: you're welcome!
$endgroup$
– user 1357113
Dec 26 '12 at 20:52
add a comment |
$begingroup$
Or we want to compute it fastly and use the formula
$$sum_{k=1}^infty frac1{k^2-x^2}=frac1{2x^2}-frac{picot,pi x}{2x}$$
where $x=frac{1}{2}$ because
$$sum_{k=1}^{infty}frac{1}{4k^2-1}=frac{1}{4}sum_{k=1}^{infty}frac{1}{k^2-left(frac{1}{2}right)^2}$$
Here you may find more information about this precious way.
$endgroup$
$begingroup$
@doniyor: you're welcome!
$endgroup$
– user 1357113
Dec 26 '12 at 20:52
add a comment |
$begingroup$
Or we want to compute it fastly and use the formula
$$sum_{k=1}^infty frac1{k^2-x^2}=frac1{2x^2}-frac{picot,pi x}{2x}$$
where $x=frac{1}{2}$ because
$$sum_{k=1}^{infty}frac{1}{4k^2-1}=frac{1}{4}sum_{k=1}^{infty}frac{1}{k^2-left(frac{1}{2}right)^2}$$
Here you may find more information about this precious way.
$endgroup$
Or we want to compute it fastly and use the formula
$$sum_{k=1}^infty frac1{k^2-x^2}=frac1{2x^2}-frac{picot,pi x}{2x}$$
where $x=frac{1}{2}$ because
$$sum_{k=1}^{infty}frac{1}{4k^2-1}=frac{1}{4}sum_{k=1}^{infty}frac{1}{k^2-left(frac{1}{2}right)^2}$$
Here you may find more information about this precious way.
edited Apr 13 '17 at 12:21
Community♦
1
1
answered Dec 26 '12 at 19:57
user 1357113user 1357113
22.5k878227
22.5k878227
$begingroup$
@doniyor: you're welcome!
$endgroup$
– user 1357113
Dec 26 '12 at 20:52
add a comment |
$begingroup$
@doniyor: you're welcome!
$endgroup$
– user 1357113
Dec 26 '12 at 20:52
$begingroup$
@doniyor: you're welcome!
$endgroup$
– user 1357113
Dec 26 '12 at 20:52
$begingroup$
@doniyor: you're welcome!
$endgroup$
– user 1357113
Dec 26 '12 at 20:52
add a comment |
$begingroup$
Hint: Work on $S_n=sum_{k=1}^nfrac{1}{4k^2-1}$ and take its limit when $ntoinfty$. Note that $$frac{1}{4n^2-1}=frac{1}{2(2n-1)}-frac{1}{2(2n+1)}$$
$endgroup$
1
$begingroup$
Why don't you experts leave such problems for beginners like us ? :(
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:40
$begingroup$
@SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
$endgroup$
– mrs
Dec 26 '12 at 16:13
$begingroup$
:), yeah, but you guys are doing wonderful job here.. thanks again for all you
$endgroup$
– doniyor
Dec 26 '12 at 20:50
$begingroup$
Yes, as dear doniyor says, you're doing a wonderful job here! +
$endgroup$
– Namaste
Mar 2 '13 at 2:45
add a comment |
$begingroup$
Hint: Work on $S_n=sum_{k=1}^nfrac{1}{4k^2-1}$ and take its limit when $ntoinfty$. Note that $$frac{1}{4n^2-1}=frac{1}{2(2n-1)}-frac{1}{2(2n+1)}$$
$endgroup$
1
$begingroup$
Why don't you experts leave such problems for beginners like us ? :(
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:40
$begingroup$
@SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
$endgroup$
– mrs
Dec 26 '12 at 16:13
$begingroup$
:), yeah, but you guys are doing wonderful job here.. thanks again for all you
$endgroup$
– doniyor
Dec 26 '12 at 20:50
$begingroup$
Yes, as dear doniyor says, you're doing a wonderful job here! +
$endgroup$
– Namaste
Mar 2 '13 at 2:45
add a comment |
$begingroup$
Hint: Work on $S_n=sum_{k=1}^nfrac{1}{4k^2-1}$ and take its limit when $ntoinfty$. Note that $$frac{1}{4n^2-1}=frac{1}{2(2n-1)}-frac{1}{2(2n+1)}$$
$endgroup$
Hint: Work on $S_n=sum_{k=1}^nfrac{1}{4k^2-1}$ and take its limit when $ntoinfty$. Note that $$frac{1}{4n^2-1}=frac{1}{2(2n-1)}-frac{1}{2(2n+1)}$$
answered Dec 26 '12 at 10:50
mrsmrs
1
1
1
$begingroup$
Why don't you experts leave such problems for beginners like us ? :(
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:40
$begingroup$
@SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
$endgroup$
– mrs
Dec 26 '12 at 16:13
$begingroup$
:), yeah, but you guys are doing wonderful job here.. thanks again for all you
$endgroup$
– doniyor
Dec 26 '12 at 20:50
$begingroup$
Yes, as dear doniyor says, you're doing a wonderful job here! +
$endgroup$
– Namaste
Mar 2 '13 at 2:45
add a comment |
1
$begingroup$
Why don't you experts leave such problems for beginners like us ? :(
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:40
$begingroup$
@SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
$endgroup$
– mrs
Dec 26 '12 at 16:13
$begingroup$
:), yeah, but you guys are doing wonderful job here.. thanks again for all you
$endgroup$
– doniyor
Dec 26 '12 at 20:50
$begingroup$
Yes, as dear doniyor says, you're doing a wonderful job here! +
$endgroup$
– Namaste
Mar 2 '13 at 2:45
1
1
$begingroup$
Why don't you experts leave such problems for beginners like us ? :(
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:40
$begingroup$
Why don't you experts leave such problems for beginners like us ? :(
$endgroup$
– Sugata Adhya
Dec 26 '12 at 13:40
$begingroup$
@SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
$endgroup$
– mrs
Dec 26 '12 at 16:13
$begingroup$
@SugataAdhya: Dear Sugata, I am not an expert. I am a teacher and like to help others in Maths. That's it. We are here to help eachother in learning Maths well. :-)
$endgroup$
– mrs
Dec 26 '12 at 16:13
$begingroup$
:), yeah, but you guys are doing wonderful job here.. thanks again for all you
$endgroup$
– doniyor
Dec 26 '12 at 20:50
$begingroup$
:), yeah, but you guys are doing wonderful job here.. thanks again for all you
$endgroup$
– doniyor
Dec 26 '12 at 20:50
$begingroup$
Yes, as dear doniyor says, you're doing a wonderful job here! +
$endgroup$
– Namaste
Mar 2 '13 at 2:45
$begingroup$
Yes, as dear doniyor says, you're doing a wonderful job here! +
$endgroup$
– Namaste
Mar 2 '13 at 2:45
add a comment |
$begingroup$
This is an easy problem by using Fourier's serie of $|sin(x)|$. So,
$|sin(x)|=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{cos(2nx)}{4n^2-1} $. By taking $x=0$, we obtain:
$0=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{1}{4n^2-1} $.
So,
$sum_{n=1}^{infty}dfrac{1}{4n^2-1}=dfrac12$
$endgroup$
add a comment |
$begingroup$
This is an easy problem by using Fourier's serie of $|sin(x)|$. So,
$|sin(x)|=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{cos(2nx)}{4n^2-1} $. By taking $x=0$, we obtain:
$0=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{1}{4n^2-1} $.
So,
$sum_{n=1}^{infty}dfrac{1}{4n^2-1}=dfrac12$
$endgroup$
add a comment |
$begingroup$
This is an easy problem by using Fourier's serie of $|sin(x)|$. So,
$|sin(x)|=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{cos(2nx)}{4n^2-1} $. By taking $x=0$, we obtain:
$0=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{1}{4n^2-1} $.
So,
$sum_{n=1}^{infty}dfrac{1}{4n^2-1}=dfrac12$
$endgroup$
This is an easy problem by using Fourier's serie of $|sin(x)|$. So,
$|sin(x)|=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{cos(2nx)}{4n^2-1} $. By taking $x=0$, we obtain:
$0=dfrac2pi-dfrac4pisum_{n=1}^{infty}dfrac{1}{4n^2-1} $.
So,
$sum_{n=1}^{infty}dfrac{1}{4n^2-1}=dfrac12$
answered Dec 14 '18 at 18:13
Toni Van Hul MirallesToni Van Hul Miralles
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f265277%2fsum-of-this-series-sum-n-1-infty-frac14n2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hint: Write your rational functions as a linear combination of fractions with denominator being a linear function.
$endgroup$
– Ofir
Dec 26 '12 at 10:47
1
$begingroup$
see math.stackexchange.com/questions/238728/finding-summation/…
$endgroup$
– MathOverview
Dec 26 '12 at 10:48
1
$begingroup$
@doniyor taking $displaystyle lim_{nto infty} left(frac{1}{2} - frac{1}{4n+2}right)$ in the result posted in Elias's link you get $frac{1}{2}$
$endgroup$
– Rustyn
Dec 26 '12 at 10:55