Solution of $u_t=mathcal{F}u$
$begingroup$
I tried to solve the equation $u_t=mathcal{F}u$, where $mathcal{F}$ denotes the Fourier transform, with initial data $u(x,0)=u_0(x)$. The solution should be given by
$$
u(x,t)=e^{mathcal{F}t}u_0=left(sum_{jgeq0}frac{mathcal{F}^jt^j}{j!}right)u_0(x)
$$
and I looked for an explicit expression of it in terms of $u_0$. Since $mathcal{F}^2=(cdot)^check{}$ (the operator that maps $v(x)mapstocheck{v}(x):=v(-x)$), we have that $mathcal{F}^3=mathcal{F}^{-1}$ and $mathcal{F}^4=id$. Suppose $u_0$ is a Schwartz function so all of this makes sense. Then we have
$$
u(x,t)=left(sum_{jin4mathbb{N}}frac{t^j}{j!}+sum_{jin1+4mathbb{N}}frac{t^j}{j!}mathcal{F}+sum_{jin2+4mathbb{N}}frac{t^j}{j!}(cdot)check{}+sum_{jin3+4mathbb{N}}frac{t^j}{j!}mathcal{F}^{-1}right)u_0(x)
$$
Next i wrote the function $u_0=phi+psi$, where $phi$ is even and $psi$ is odd, namely
$$
phi(x)=frac{1}{2}(u_0(x)+u_0(-x))quadtext{and}quadpsi(x)=frac{1}{2}(u_0(x)-u_0(-x))
$$
In this way (recalling that Fourier transform of an even function is odd and viceversa) one computes
$$
u(x,t)=sum_{jinmathbb{N}}frac{t^{2j}}{(2j)!}phi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j}}{(2j)!}psi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j+1}}{(2j+1)!}mathcal{F}phi(x)+sum_{jinmathbb{N}}frac{t^{2j+1}}{(2j+1)!}mathcal{F}psi(x)
$$
which equals
$$
u(x,t)=cosh(t)phi(x)+cos(t)psi(x)+sin(t)mathcal{F}phi(x)+sinh(t)mathcal{F}psi(x).
$$
The problem is that now, trying to check
$$
u_t(x,t)=sinh(t)phi(x)-sin(t)psi(x)+cos(t)mathcal{F}phi(x)+cosh(t)mathcal{F}psi(x)
$$
and
$$
mathcal{F}u(x,t)=cosh(t)mathcal{F}phi(x)+cos(t)mathcal{F}psi(x)+sin(t)phi(x)-sinh(t)psi(x)
$$
they are not equal. Is my calculation wrong? Every help is extremely appreciated.
pde fourier-analysis
$endgroup$
add a comment |
$begingroup$
I tried to solve the equation $u_t=mathcal{F}u$, where $mathcal{F}$ denotes the Fourier transform, with initial data $u(x,0)=u_0(x)$. The solution should be given by
$$
u(x,t)=e^{mathcal{F}t}u_0=left(sum_{jgeq0}frac{mathcal{F}^jt^j}{j!}right)u_0(x)
$$
and I looked for an explicit expression of it in terms of $u_0$. Since $mathcal{F}^2=(cdot)^check{}$ (the operator that maps $v(x)mapstocheck{v}(x):=v(-x)$), we have that $mathcal{F}^3=mathcal{F}^{-1}$ and $mathcal{F}^4=id$. Suppose $u_0$ is a Schwartz function so all of this makes sense. Then we have
$$
u(x,t)=left(sum_{jin4mathbb{N}}frac{t^j}{j!}+sum_{jin1+4mathbb{N}}frac{t^j}{j!}mathcal{F}+sum_{jin2+4mathbb{N}}frac{t^j}{j!}(cdot)check{}+sum_{jin3+4mathbb{N}}frac{t^j}{j!}mathcal{F}^{-1}right)u_0(x)
$$
Next i wrote the function $u_0=phi+psi$, where $phi$ is even and $psi$ is odd, namely
$$
phi(x)=frac{1}{2}(u_0(x)+u_0(-x))quadtext{and}quadpsi(x)=frac{1}{2}(u_0(x)-u_0(-x))
$$
In this way (recalling that Fourier transform of an even function is odd and viceversa) one computes
$$
u(x,t)=sum_{jinmathbb{N}}frac{t^{2j}}{(2j)!}phi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j}}{(2j)!}psi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j+1}}{(2j+1)!}mathcal{F}phi(x)+sum_{jinmathbb{N}}frac{t^{2j+1}}{(2j+1)!}mathcal{F}psi(x)
$$
which equals
$$
u(x,t)=cosh(t)phi(x)+cos(t)psi(x)+sin(t)mathcal{F}phi(x)+sinh(t)mathcal{F}psi(x).
$$
The problem is that now, trying to check
$$
u_t(x,t)=sinh(t)phi(x)-sin(t)psi(x)+cos(t)mathcal{F}phi(x)+cosh(t)mathcal{F}psi(x)
$$
and
$$
mathcal{F}u(x,t)=cosh(t)mathcal{F}phi(x)+cos(t)mathcal{F}psi(x)+sin(t)phi(x)-sinh(t)psi(x)
$$
they are not equal. Is my calculation wrong? Every help is extremely appreciated.
pde fourier-analysis
$endgroup$
add a comment |
$begingroup$
I tried to solve the equation $u_t=mathcal{F}u$, where $mathcal{F}$ denotes the Fourier transform, with initial data $u(x,0)=u_0(x)$. The solution should be given by
$$
u(x,t)=e^{mathcal{F}t}u_0=left(sum_{jgeq0}frac{mathcal{F}^jt^j}{j!}right)u_0(x)
$$
and I looked for an explicit expression of it in terms of $u_0$. Since $mathcal{F}^2=(cdot)^check{}$ (the operator that maps $v(x)mapstocheck{v}(x):=v(-x)$), we have that $mathcal{F}^3=mathcal{F}^{-1}$ and $mathcal{F}^4=id$. Suppose $u_0$ is a Schwartz function so all of this makes sense. Then we have
$$
u(x,t)=left(sum_{jin4mathbb{N}}frac{t^j}{j!}+sum_{jin1+4mathbb{N}}frac{t^j}{j!}mathcal{F}+sum_{jin2+4mathbb{N}}frac{t^j}{j!}(cdot)check{}+sum_{jin3+4mathbb{N}}frac{t^j}{j!}mathcal{F}^{-1}right)u_0(x)
$$
Next i wrote the function $u_0=phi+psi$, where $phi$ is even and $psi$ is odd, namely
$$
phi(x)=frac{1}{2}(u_0(x)+u_0(-x))quadtext{and}quadpsi(x)=frac{1}{2}(u_0(x)-u_0(-x))
$$
In this way (recalling that Fourier transform of an even function is odd and viceversa) one computes
$$
u(x,t)=sum_{jinmathbb{N}}frac{t^{2j}}{(2j)!}phi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j}}{(2j)!}psi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j+1}}{(2j+1)!}mathcal{F}phi(x)+sum_{jinmathbb{N}}frac{t^{2j+1}}{(2j+1)!}mathcal{F}psi(x)
$$
which equals
$$
u(x,t)=cosh(t)phi(x)+cos(t)psi(x)+sin(t)mathcal{F}phi(x)+sinh(t)mathcal{F}psi(x).
$$
The problem is that now, trying to check
$$
u_t(x,t)=sinh(t)phi(x)-sin(t)psi(x)+cos(t)mathcal{F}phi(x)+cosh(t)mathcal{F}psi(x)
$$
and
$$
mathcal{F}u(x,t)=cosh(t)mathcal{F}phi(x)+cos(t)mathcal{F}psi(x)+sin(t)phi(x)-sinh(t)psi(x)
$$
they are not equal. Is my calculation wrong? Every help is extremely appreciated.
pde fourier-analysis
$endgroup$
I tried to solve the equation $u_t=mathcal{F}u$, where $mathcal{F}$ denotes the Fourier transform, with initial data $u(x,0)=u_0(x)$. The solution should be given by
$$
u(x,t)=e^{mathcal{F}t}u_0=left(sum_{jgeq0}frac{mathcal{F}^jt^j}{j!}right)u_0(x)
$$
and I looked for an explicit expression of it in terms of $u_0$. Since $mathcal{F}^2=(cdot)^check{}$ (the operator that maps $v(x)mapstocheck{v}(x):=v(-x)$), we have that $mathcal{F}^3=mathcal{F}^{-1}$ and $mathcal{F}^4=id$. Suppose $u_0$ is a Schwartz function so all of this makes sense. Then we have
$$
u(x,t)=left(sum_{jin4mathbb{N}}frac{t^j}{j!}+sum_{jin1+4mathbb{N}}frac{t^j}{j!}mathcal{F}+sum_{jin2+4mathbb{N}}frac{t^j}{j!}(cdot)check{}+sum_{jin3+4mathbb{N}}frac{t^j}{j!}mathcal{F}^{-1}right)u_0(x)
$$
Next i wrote the function $u_0=phi+psi$, where $phi$ is even and $psi$ is odd, namely
$$
phi(x)=frac{1}{2}(u_0(x)+u_0(-x))quadtext{and}quadpsi(x)=frac{1}{2}(u_0(x)-u_0(-x))
$$
In this way (recalling that Fourier transform of an even function is odd and viceversa) one computes
$$
u(x,t)=sum_{jinmathbb{N}}frac{t^{2j}}{(2j)!}phi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j}}{(2j)!}psi(x)+sum_{jinmathbb{N}}(-)^jfrac{t^{2j+1}}{(2j+1)!}mathcal{F}phi(x)+sum_{jinmathbb{N}}frac{t^{2j+1}}{(2j+1)!}mathcal{F}psi(x)
$$
which equals
$$
u(x,t)=cosh(t)phi(x)+cos(t)psi(x)+sin(t)mathcal{F}phi(x)+sinh(t)mathcal{F}psi(x).
$$
The problem is that now, trying to check
$$
u_t(x,t)=sinh(t)phi(x)-sin(t)psi(x)+cos(t)mathcal{F}phi(x)+cosh(t)mathcal{F}psi(x)
$$
and
$$
mathcal{F}u(x,t)=cosh(t)mathcal{F}phi(x)+cos(t)mathcal{F}psi(x)+sin(t)phi(x)-sinh(t)psi(x)
$$
they are not equal. Is my calculation wrong? Every help is extremely appreciated.
pde fourier-analysis
pde fourier-analysis
asked Dec 14 '18 at 19:17
MarcoMarco
336110
336110
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
As you noted, $mathcal{F}^4=I$. So
$$
(1-lambda^4)I=(mathcal{F}^4-lambda^4 I)=(mathcal{F}-lambda I)(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)
$$
which gives
$$
(lambda I-mathcal{F})^{-1}=frac{1}{lambda^4-1}(mathcal{F}^3+lambda mathcal{F}^2+lambda^2mathcal{F}+lambda^3 I)
$$
So, the following is evaluated by computing residues at $1,i,-1,-i$:
$$
e^{tmathcal{F}}=frac{1}{2pi i}oint_{C}e^{lambda t}(lambda I-mathcal{F})^{-1}dlambda \
=frac{1}{2pi i}oint_{C}frac{e^{lambda t}(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)}{(lambda-1)(lambda-i)(lambda+1)(lambda+i)}dlambda
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039795%2fsolution-of-u-t-mathcalfu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
As you noted, $mathcal{F}^4=I$. So
$$
(1-lambda^4)I=(mathcal{F}^4-lambda^4 I)=(mathcal{F}-lambda I)(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)
$$
which gives
$$
(lambda I-mathcal{F})^{-1}=frac{1}{lambda^4-1}(mathcal{F}^3+lambda mathcal{F}^2+lambda^2mathcal{F}+lambda^3 I)
$$
So, the following is evaluated by computing residues at $1,i,-1,-i$:
$$
e^{tmathcal{F}}=frac{1}{2pi i}oint_{C}e^{lambda t}(lambda I-mathcal{F})^{-1}dlambda \
=frac{1}{2pi i}oint_{C}frac{e^{lambda t}(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)}{(lambda-1)(lambda-i)(lambda+1)(lambda+i)}dlambda
$$
$endgroup$
add a comment |
$begingroup$
As you noted, $mathcal{F}^4=I$. So
$$
(1-lambda^4)I=(mathcal{F}^4-lambda^4 I)=(mathcal{F}-lambda I)(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)
$$
which gives
$$
(lambda I-mathcal{F})^{-1}=frac{1}{lambda^4-1}(mathcal{F}^3+lambda mathcal{F}^2+lambda^2mathcal{F}+lambda^3 I)
$$
So, the following is evaluated by computing residues at $1,i,-1,-i$:
$$
e^{tmathcal{F}}=frac{1}{2pi i}oint_{C}e^{lambda t}(lambda I-mathcal{F})^{-1}dlambda \
=frac{1}{2pi i}oint_{C}frac{e^{lambda t}(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)}{(lambda-1)(lambda-i)(lambda+1)(lambda+i)}dlambda
$$
$endgroup$
add a comment |
$begingroup$
As you noted, $mathcal{F}^4=I$. So
$$
(1-lambda^4)I=(mathcal{F}^4-lambda^4 I)=(mathcal{F}-lambda I)(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)
$$
which gives
$$
(lambda I-mathcal{F})^{-1}=frac{1}{lambda^4-1}(mathcal{F}^3+lambda mathcal{F}^2+lambda^2mathcal{F}+lambda^3 I)
$$
So, the following is evaluated by computing residues at $1,i,-1,-i$:
$$
e^{tmathcal{F}}=frac{1}{2pi i}oint_{C}e^{lambda t}(lambda I-mathcal{F})^{-1}dlambda \
=frac{1}{2pi i}oint_{C}frac{e^{lambda t}(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)}{(lambda-1)(lambda-i)(lambda+1)(lambda+i)}dlambda
$$
$endgroup$
As you noted, $mathcal{F}^4=I$. So
$$
(1-lambda^4)I=(mathcal{F}^4-lambda^4 I)=(mathcal{F}-lambda I)(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)
$$
which gives
$$
(lambda I-mathcal{F})^{-1}=frac{1}{lambda^4-1}(mathcal{F}^3+lambda mathcal{F}^2+lambda^2mathcal{F}+lambda^3 I)
$$
So, the following is evaluated by computing residues at $1,i,-1,-i$:
$$
e^{tmathcal{F}}=frac{1}{2pi i}oint_{C}e^{lambda t}(lambda I-mathcal{F})^{-1}dlambda \
=frac{1}{2pi i}oint_{C}frac{e^{lambda t}(mathcal{F}^3+lambdamathcal{F}^2+lambda^2mathcal{F}+lambda^3I)}{(lambda-1)(lambda-i)(lambda+1)(lambda+i)}dlambda
$$
answered Dec 18 '18 at 5:58
DisintegratingByPartsDisintegratingByParts
60.4k42681
60.4k42681
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039795%2fsolution-of-u-t-mathcalfu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown