Correlation of function of two random variables after resampling one












0












$begingroup$


Consider a measurable function $g:mathbb{R}^2rightarrow [0,+infty)^2$ that satisfies that for all $(x,y)inmathbb{R}^2$ at least one coordinate
of $g(x,y)$ is 0. Call its coordinates $g_1$ and $g_2$.
Let $X,Y_1, Y_2$ be independent real-valued random variables, such that $Y_1$ and $Y_2$ have the same distribution, and such that $mathbb{E}(g_2(X,Y_1))<infty$.



Is the following inequality true?



$ mathbb{E}Big(g_2(X,Y_2)cdot mathbb{1}_{{g_1(X,Y_1)=0}} Big)
geq mathbb{E}Big(g_2(X,Y_2)Big) cdot mathbb{P}Big(g_1(X,Y_1)=0Big)$



It looks simple and intuitive, but so far I haven't found a proof or a counterexample.










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Consider a measurable function $g:mathbb{R}^2rightarrow [0,+infty)^2$ that satisfies that for all $(x,y)inmathbb{R}^2$ at least one coordinate
    of $g(x,y)$ is 0. Call its coordinates $g_1$ and $g_2$.
    Let $X,Y_1, Y_2$ be independent real-valued random variables, such that $Y_1$ and $Y_2$ have the same distribution, and such that $mathbb{E}(g_2(X,Y_1))<infty$.



    Is the following inequality true?



    $ mathbb{E}Big(g_2(X,Y_2)cdot mathbb{1}_{{g_1(X,Y_1)=0}} Big)
    geq mathbb{E}Big(g_2(X,Y_2)Big) cdot mathbb{P}Big(g_1(X,Y_1)=0Big)$



    It looks simple and intuitive, but so far I haven't found a proof or a counterexample.










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Consider a measurable function $g:mathbb{R}^2rightarrow [0,+infty)^2$ that satisfies that for all $(x,y)inmathbb{R}^2$ at least one coordinate
      of $g(x,y)$ is 0. Call its coordinates $g_1$ and $g_2$.
      Let $X,Y_1, Y_2$ be independent real-valued random variables, such that $Y_1$ and $Y_2$ have the same distribution, and such that $mathbb{E}(g_2(X,Y_1))<infty$.



      Is the following inequality true?



      $ mathbb{E}Big(g_2(X,Y_2)cdot mathbb{1}_{{g_1(X,Y_1)=0}} Big)
      geq mathbb{E}Big(g_2(X,Y_2)Big) cdot mathbb{P}Big(g_1(X,Y_1)=0Big)$



      It looks simple and intuitive, but so far I haven't found a proof or a counterexample.










      share|cite|improve this question









      $endgroup$




      Consider a measurable function $g:mathbb{R}^2rightarrow [0,+infty)^2$ that satisfies that for all $(x,y)inmathbb{R}^2$ at least one coordinate
      of $g(x,y)$ is 0. Call its coordinates $g_1$ and $g_2$.
      Let $X,Y_1, Y_2$ be independent real-valued random variables, such that $Y_1$ and $Y_2$ have the same distribution, and such that $mathbb{E}(g_2(X,Y_1))<infty$.



      Is the following inequality true?



      $ mathbb{E}Big(g_2(X,Y_2)cdot mathbb{1}_{{g_1(X,Y_1)=0}} Big)
      geq mathbb{E}Big(g_2(X,Y_2)Big) cdot mathbb{P}Big(g_1(X,Y_1)=0Big)$



      It looks simple and intuitive, but so far I haven't found a proof or a counterexample.







      probability random-variables correlation expected-value






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 14 '18 at 19:54









      Andrés CristiAndrés Cristi

      11




      11






















          0






          active

          oldest

          votes












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039824%2fcorrelation-of-function-of-two-random-variables-after-resampling-one%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039824%2fcorrelation-of-function-of-two-random-variables-after-resampling-one%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

          Can I use Tabulator js library in my java Spring + Thymeleaf project?