Show that the $L^{p}$ norm $|f|_{L^{p}} := big( int^{b}_{a} |f(x)|^pbig)^{1/p}$ is not induced by a scalar...
$begingroup$
On $X = C^0big([a,b]big)$, for any $p in mathbb{R}$, $p>1$, we define the $L^p$ norm by,
$$|f|_{L^{p}}:=big(int^{b}_{a}|f(x)|^{p}dx big)^{1/p}.$$
Show that for $pneq 2$, this norm is not induced by a scalar product.
My method of trying to prove this was to prove a contradiction to the parallelogram rule,
$$ |f+g|^{2}_{p} + |f-g|^{2}_{p} = 2|f|^{2}_{p} + 2|g|^{2}_{p}, tag{$1$}$$
where $f,g in C^{0}([a,b])$.
So I defined the following functions;
$$f(x):=frac{a+b}{2}-x$$
$$g(x) := begin{cases}frac{a+b}{2}-x, for a leq x le frac{a+b}{2}. \
x-frac{a+b}{2}, for frac{a+b}{2} < x le b end{cases}$$
which gives
$$f(x)+g(x) = begin{cases} a+b-2x, & for ale x le frac{a+b}{2}. \ 0, & for frac{a+b}{2} < x le bend{cases}$$
$$f(x)-g(x) = begin{cases} 0, & for a le x le frac{a+b}{2}. \
2x - (a+b), & for frac{a+b}{2} < x le b end{cases}$$
Then I proceeded to calculate each term of the parallelogram rule,
$$|f+g|^{2}_{p} = bigg( int^{frac{a+b}{2}}_{a}|a+b-2x|^{p}bigg)^{2/p} = frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}} $$
$$ |f-g|^{2}_{p} = bigg( int_{frac{a+b}{2}}^{b}|2x- (a+b)|^{p}bigg)^{2/p} = frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}}$$
$$2|f|^{2}_{p} = 2 bigg( int^{b}_{a}| frac{a+b}{2}-x|^{p} dx bigg)^{2/p} = 2 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}} $$
$$begin{align}2 |g|^{2}_{p} & = 2 bigg(int^{frac{a+b}{2}}_{a} |frac{a+b}{2} - x|^{p} dx + int^{b}_{frac{a+b}{2}}|x- frac{a+b}{2}|^{p} dxbigg)^{2/p} \ & =2 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}} end{align}$$
Plugging into $(1)$ we then get
$$2 cdot frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}} = 4 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}}$$
which simplifies quite nicely to
$$2^{p} = 4.$$
So the equality only holds for $p = 2$.
Is what i've done correct? is there another way of proving the question which is better?
functional-analysis proof-verification norm lp-spaces inner-product-space
$endgroup$
add a comment |
$begingroup$
On $X = C^0big([a,b]big)$, for any $p in mathbb{R}$, $p>1$, we define the $L^p$ norm by,
$$|f|_{L^{p}}:=big(int^{b}_{a}|f(x)|^{p}dx big)^{1/p}.$$
Show that for $pneq 2$, this norm is not induced by a scalar product.
My method of trying to prove this was to prove a contradiction to the parallelogram rule,
$$ |f+g|^{2}_{p} + |f-g|^{2}_{p} = 2|f|^{2}_{p} + 2|g|^{2}_{p}, tag{$1$}$$
where $f,g in C^{0}([a,b])$.
So I defined the following functions;
$$f(x):=frac{a+b}{2}-x$$
$$g(x) := begin{cases}frac{a+b}{2}-x, for a leq x le frac{a+b}{2}. \
x-frac{a+b}{2}, for frac{a+b}{2} < x le b end{cases}$$
which gives
$$f(x)+g(x) = begin{cases} a+b-2x, & for ale x le frac{a+b}{2}. \ 0, & for frac{a+b}{2} < x le bend{cases}$$
$$f(x)-g(x) = begin{cases} 0, & for a le x le frac{a+b}{2}. \
2x - (a+b), & for frac{a+b}{2} < x le b end{cases}$$
Then I proceeded to calculate each term of the parallelogram rule,
$$|f+g|^{2}_{p} = bigg( int^{frac{a+b}{2}}_{a}|a+b-2x|^{p}bigg)^{2/p} = frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}} $$
$$ |f-g|^{2}_{p} = bigg( int_{frac{a+b}{2}}^{b}|2x- (a+b)|^{p}bigg)^{2/p} = frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}}$$
$$2|f|^{2}_{p} = 2 bigg( int^{b}_{a}| frac{a+b}{2}-x|^{p} dx bigg)^{2/p} = 2 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}} $$
$$begin{align}2 |g|^{2}_{p} & = 2 bigg(int^{frac{a+b}{2}}_{a} |frac{a+b}{2} - x|^{p} dx + int^{b}_{frac{a+b}{2}}|x- frac{a+b}{2}|^{p} dxbigg)^{2/p} \ & =2 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}} end{align}$$
Plugging into $(1)$ we then get
$$2 cdot frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}} = 4 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}}$$
which simplifies quite nicely to
$$2^{p} = 4.$$
So the equality only holds for $p = 2$.
Is what i've done correct? is there another way of proving the question which is better?
functional-analysis proof-verification norm lp-spaces inner-product-space
$endgroup$
add a comment |
$begingroup$
On $X = C^0big([a,b]big)$, for any $p in mathbb{R}$, $p>1$, we define the $L^p$ norm by,
$$|f|_{L^{p}}:=big(int^{b}_{a}|f(x)|^{p}dx big)^{1/p}.$$
Show that for $pneq 2$, this norm is not induced by a scalar product.
My method of trying to prove this was to prove a contradiction to the parallelogram rule,
$$ |f+g|^{2}_{p} + |f-g|^{2}_{p} = 2|f|^{2}_{p} + 2|g|^{2}_{p}, tag{$1$}$$
where $f,g in C^{0}([a,b])$.
So I defined the following functions;
$$f(x):=frac{a+b}{2}-x$$
$$g(x) := begin{cases}frac{a+b}{2}-x, for a leq x le frac{a+b}{2}. \
x-frac{a+b}{2}, for frac{a+b}{2} < x le b end{cases}$$
which gives
$$f(x)+g(x) = begin{cases} a+b-2x, & for ale x le frac{a+b}{2}. \ 0, & for frac{a+b}{2} < x le bend{cases}$$
$$f(x)-g(x) = begin{cases} 0, & for a le x le frac{a+b}{2}. \
2x - (a+b), & for frac{a+b}{2} < x le b end{cases}$$
Then I proceeded to calculate each term of the parallelogram rule,
$$|f+g|^{2}_{p} = bigg( int^{frac{a+b}{2}}_{a}|a+b-2x|^{p}bigg)^{2/p} = frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}} $$
$$ |f-g|^{2}_{p} = bigg( int_{frac{a+b}{2}}^{b}|2x- (a+b)|^{p}bigg)^{2/p} = frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}}$$
$$2|f|^{2}_{p} = 2 bigg( int^{b}_{a}| frac{a+b}{2}-x|^{p} dx bigg)^{2/p} = 2 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}} $$
$$begin{align}2 |g|^{2}_{p} & = 2 bigg(int^{frac{a+b}{2}}_{a} |frac{a+b}{2} - x|^{p} dx + int^{b}_{frac{a+b}{2}}|x- frac{a+b}{2}|^{p} dxbigg)^{2/p} \ & =2 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}} end{align}$$
Plugging into $(1)$ we then get
$$2 cdot frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}} = 4 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}}$$
which simplifies quite nicely to
$$2^{p} = 4.$$
So the equality only holds for $p = 2$.
Is what i've done correct? is there another way of proving the question which is better?
functional-analysis proof-verification norm lp-spaces inner-product-space
$endgroup$
On $X = C^0big([a,b]big)$, for any $p in mathbb{R}$, $p>1$, we define the $L^p$ norm by,
$$|f|_{L^{p}}:=big(int^{b}_{a}|f(x)|^{p}dx big)^{1/p}.$$
Show that for $pneq 2$, this norm is not induced by a scalar product.
My method of trying to prove this was to prove a contradiction to the parallelogram rule,
$$ |f+g|^{2}_{p} + |f-g|^{2}_{p} = 2|f|^{2}_{p} + 2|g|^{2}_{p}, tag{$1$}$$
where $f,g in C^{0}([a,b])$.
So I defined the following functions;
$$f(x):=frac{a+b}{2}-x$$
$$g(x) := begin{cases}frac{a+b}{2}-x, for a leq x le frac{a+b}{2}. \
x-frac{a+b}{2}, for frac{a+b}{2} < x le b end{cases}$$
which gives
$$f(x)+g(x) = begin{cases} a+b-2x, & for ale x le frac{a+b}{2}. \ 0, & for frac{a+b}{2} < x le bend{cases}$$
$$f(x)-g(x) = begin{cases} 0, & for a le x le frac{a+b}{2}. \
2x - (a+b), & for frac{a+b}{2} < x le b end{cases}$$
Then I proceeded to calculate each term of the parallelogram rule,
$$|f+g|^{2}_{p} = bigg( int^{frac{a+b}{2}}_{a}|a+b-2x|^{p}bigg)^{2/p} = frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}} $$
$$ |f-g|^{2}_{p} = bigg( int_{frac{a+b}{2}}^{b}|2x- (a+b)|^{p}bigg)^{2/p} = frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}}$$
$$2|f|^{2}_{p} = 2 bigg( int^{b}_{a}| frac{a+b}{2}-x|^{p} dx bigg)^{2/p} = 2 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}} $$
$$begin{align}2 |g|^{2}_{p} & = 2 bigg(int^{frac{a+b}{2}}_{a} |frac{a+b}{2} - x|^{p} dx + int^{b}_{frac{a+b}{2}}|x- frac{a+b}{2}|^{p} dxbigg)^{2/p} \ & =2 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}} end{align}$$
Plugging into $(1)$ we then get
$$2 cdot frac{(b-a)^{frac{2(p+1)}{p}}}{(2(p+1))^{2/p}} = 4 cdot frac{2^{2/p}(frac{b-a}{2})^{frac{2(p+1)}{p}}}{(p+1)^{2/p}}$$
which simplifies quite nicely to
$$2^{p} = 4.$$
So the equality only holds for $p = 2$.
Is what i've done correct? is there another way of proving the question which is better?
functional-analysis proof-verification norm lp-spaces inner-product-space
functional-analysis proof-verification norm lp-spaces inner-product-space
edited Dec 14 '18 at 22:10
mechanodroid
28.9k62648
28.9k62648
asked Dec 14 '18 at 20:50
seraphimkseraphimk
1429
1429
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your idea looks fine. However, here's a simpler approach: Let $f = chi_A$ and $g = chi_B$ be the indicator functions of two disjoint sets*. Then
$$|f + g|_p^2 + |f - g|_p^2 = 2 (|A| + |B|)^{2/p}$$
by a direct calculation. On the other hand,
$$2 |f|_p^2 + 2|g|_p^2 = 2 (|A|^{2/p} + |B|^{2/p}).$$
This would imply that for all real numbers $a, b ge 0$ we have
$$(a + b)^{2/p} = a^{2/p} + b^{2/p}.$$
For any $a, b$ which are both positive, this implies $p = 2$ as a consequence of Jensen's inequality. For a specific example, $a = b = 1$ implies $2^{2/p} = 2$, so $p = 2$.
*The point of this answer is that many integral inequalities can be studied purely from the point of view of testing against sets. Although $chi_A$ and $chi_B$ aren't continuous, they can be approximated arbitrarily well in $L^p$ by smooth functions.
$endgroup$
$begingroup$
Thanks for your comment, It didn't even cross my mind to look at indicator functions!
$endgroup$
– seraphimk
Dec 14 '18 at 21:41
add a comment |
$begingroup$
Here is a similar idea with simpler computation. Define
$$f(x) = begin{cases} left(frac{a+b}2-xright)^{1/p},&text{ if } x in left[a, frac{a+b}2right] \
0,&text{ if } x in left[frac{a+b}2,bright]
end{cases}$$
$$g(x) = begin{cases} 0,&text{ if } x in left[a, frac{a+b}2right] \
left(x-frac{a+b}2right)^{1/p},&text{ if } x in left[frac{a+b}2,bright]
end{cases}$$
Notice that $f$ and $g$ have disjoint supports so $$f(x)+g(x) = left|frac{a+b}2-xright|^{1/p}$$ and $$f(x)-g(x) = operatorname{sign}left(frac{a+b}2-xright)left|frac{a+b}2-xright|^{1/p}$$
We get
$$|f|_p^2 = left(int_{left[a, frac{a+b}2right]} left(frac{a+b}2-xright),dxright)^{2/p} = left[frac{(b-a)^2}8right]^{2/p}$$
Similarly we also see $|g|_p^2 = left[frac{(b-a)^2}8right]^{2/p}$, $|f+g|_p^2 = left[frac{(b-a)^2}4right]^{2/p}$ and $|f-g|_p^2 = 0$.
Therefore
$$left[frac{(b-a)^2}4right]^{2/p} = |f+g|_p^2 = 4|f_p|^2 = 4left[frac{(b-a)^2}8right]^{2/p}$$
or $2 = 4^{p/2}$. This implies $p=2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039866%2fshow-that-the-lp-norm-f-lp-big-intb-a-fxp-big1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your idea looks fine. However, here's a simpler approach: Let $f = chi_A$ and $g = chi_B$ be the indicator functions of two disjoint sets*. Then
$$|f + g|_p^2 + |f - g|_p^2 = 2 (|A| + |B|)^{2/p}$$
by a direct calculation. On the other hand,
$$2 |f|_p^2 + 2|g|_p^2 = 2 (|A|^{2/p} + |B|^{2/p}).$$
This would imply that for all real numbers $a, b ge 0$ we have
$$(a + b)^{2/p} = a^{2/p} + b^{2/p}.$$
For any $a, b$ which are both positive, this implies $p = 2$ as a consequence of Jensen's inequality. For a specific example, $a = b = 1$ implies $2^{2/p} = 2$, so $p = 2$.
*The point of this answer is that many integral inequalities can be studied purely from the point of view of testing against sets. Although $chi_A$ and $chi_B$ aren't continuous, they can be approximated arbitrarily well in $L^p$ by smooth functions.
$endgroup$
$begingroup$
Thanks for your comment, It didn't even cross my mind to look at indicator functions!
$endgroup$
– seraphimk
Dec 14 '18 at 21:41
add a comment |
$begingroup$
Your idea looks fine. However, here's a simpler approach: Let $f = chi_A$ and $g = chi_B$ be the indicator functions of two disjoint sets*. Then
$$|f + g|_p^2 + |f - g|_p^2 = 2 (|A| + |B|)^{2/p}$$
by a direct calculation. On the other hand,
$$2 |f|_p^2 + 2|g|_p^2 = 2 (|A|^{2/p} + |B|^{2/p}).$$
This would imply that for all real numbers $a, b ge 0$ we have
$$(a + b)^{2/p} = a^{2/p} + b^{2/p}.$$
For any $a, b$ which are both positive, this implies $p = 2$ as a consequence of Jensen's inequality. For a specific example, $a = b = 1$ implies $2^{2/p} = 2$, so $p = 2$.
*The point of this answer is that many integral inequalities can be studied purely from the point of view of testing against sets. Although $chi_A$ and $chi_B$ aren't continuous, they can be approximated arbitrarily well in $L^p$ by smooth functions.
$endgroup$
$begingroup$
Thanks for your comment, It didn't even cross my mind to look at indicator functions!
$endgroup$
– seraphimk
Dec 14 '18 at 21:41
add a comment |
$begingroup$
Your idea looks fine. However, here's a simpler approach: Let $f = chi_A$ and $g = chi_B$ be the indicator functions of two disjoint sets*. Then
$$|f + g|_p^2 + |f - g|_p^2 = 2 (|A| + |B|)^{2/p}$$
by a direct calculation. On the other hand,
$$2 |f|_p^2 + 2|g|_p^2 = 2 (|A|^{2/p} + |B|^{2/p}).$$
This would imply that for all real numbers $a, b ge 0$ we have
$$(a + b)^{2/p} = a^{2/p} + b^{2/p}.$$
For any $a, b$ which are both positive, this implies $p = 2$ as a consequence of Jensen's inequality. For a specific example, $a = b = 1$ implies $2^{2/p} = 2$, so $p = 2$.
*The point of this answer is that many integral inequalities can be studied purely from the point of view of testing against sets. Although $chi_A$ and $chi_B$ aren't continuous, they can be approximated arbitrarily well in $L^p$ by smooth functions.
$endgroup$
Your idea looks fine. However, here's a simpler approach: Let $f = chi_A$ and $g = chi_B$ be the indicator functions of two disjoint sets*. Then
$$|f + g|_p^2 + |f - g|_p^2 = 2 (|A| + |B|)^{2/p}$$
by a direct calculation. On the other hand,
$$2 |f|_p^2 + 2|g|_p^2 = 2 (|A|^{2/p} + |B|^{2/p}).$$
This would imply that for all real numbers $a, b ge 0$ we have
$$(a + b)^{2/p} = a^{2/p} + b^{2/p}.$$
For any $a, b$ which are both positive, this implies $p = 2$ as a consequence of Jensen's inequality. For a specific example, $a = b = 1$ implies $2^{2/p} = 2$, so $p = 2$.
*The point of this answer is that many integral inequalities can be studied purely from the point of view of testing against sets. Although $chi_A$ and $chi_B$ aren't continuous, they can be approximated arbitrarily well in $L^p$ by smooth functions.
answered Dec 14 '18 at 21:14
T. BongersT. Bongers
23.5k54762
23.5k54762
$begingroup$
Thanks for your comment, It didn't even cross my mind to look at indicator functions!
$endgroup$
– seraphimk
Dec 14 '18 at 21:41
add a comment |
$begingroup$
Thanks for your comment, It didn't even cross my mind to look at indicator functions!
$endgroup$
– seraphimk
Dec 14 '18 at 21:41
$begingroup$
Thanks for your comment, It didn't even cross my mind to look at indicator functions!
$endgroup$
– seraphimk
Dec 14 '18 at 21:41
$begingroup$
Thanks for your comment, It didn't even cross my mind to look at indicator functions!
$endgroup$
– seraphimk
Dec 14 '18 at 21:41
add a comment |
$begingroup$
Here is a similar idea with simpler computation. Define
$$f(x) = begin{cases} left(frac{a+b}2-xright)^{1/p},&text{ if } x in left[a, frac{a+b}2right] \
0,&text{ if } x in left[frac{a+b}2,bright]
end{cases}$$
$$g(x) = begin{cases} 0,&text{ if } x in left[a, frac{a+b}2right] \
left(x-frac{a+b}2right)^{1/p},&text{ if } x in left[frac{a+b}2,bright]
end{cases}$$
Notice that $f$ and $g$ have disjoint supports so $$f(x)+g(x) = left|frac{a+b}2-xright|^{1/p}$$ and $$f(x)-g(x) = operatorname{sign}left(frac{a+b}2-xright)left|frac{a+b}2-xright|^{1/p}$$
We get
$$|f|_p^2 = left(int_{left[a, frac{a+b}2right]} left(frac{a+b}2-xright),dxright)^{2/p} = left[frac{(b-a)^2}8right]^{2/p}$$
Similarly we also see $|g|_p^2 = left[frac{(b-a)^2}8right]^{2/p}$, $|f+g|_p^2 = left[frac{(b-a)^2}4right]^{2/p}$ and $|f-g|_p^2 = 0$.
Therefore
$$left[frac{(b-a)^2}4right]^{2/p} = |f+g|_p^2 = 4|f_p|^2 = 4left[frac{(b-a)^2}8right]^{2/p}$$
or $2 = 4^{p/2}$. This implies $p=2$.
$endgroup$
add a comment |
$begingroup$
Here is a similar idea with simpler computation. Define
$$f(x) = begin{cases} left(frac{a+b}2-xright)^{1/p},&text{ if } x in left[a, frac{a+b}2right] \
0,&text{ if } x in left[frac{a+b}2,bright]
end{cases}$$
$$g(x) = begin{cases} 0,&text{ if } x in left[a, frac{a+b}2right] \
left(x-frac{a+b}2right)^{1/p},&text{ if } x in left[frac{a+b}2,bright]
end{cases}$$
Notice that $f$ and $g$ have disjoint supports so $$f(x)+g(x) = left|frac{a+b}2-xright|^{1/p}$$ and $$f(x)-g(x) = operatorname{sign}left(frac{a+b}2-xright)left|frac{a+b}2-xright|^{1/p}$$
We get
$$|f|_p^2 = left(int_{left[a, frac{a+b}2right]} left(frac{a+b}2-xright),dxright)^{2/p} = left[frac{(b-a)^2}8right]^{2/p}$$
Similarly we also see $|g|_p^2 = left[frac{(b-a)^2}8right]^{2/p}$, $|f+g|_p^2 = left[frac{(b-a)^2}4right]^{2/p}$ and $|f-g|_p^2 = 0$.
Therefore
$$left[frac{(b-a)^2}4right]^{2/p} = |f+g|_p^2 = 4|f_p|^2 = 4left[frac{(b-a)^2}8right]^{2/p}$$
or $2 = 4^{p/2}$. This implies $p=2$.
$endgroup$
add a comment |
$begingroup$
Here is a similar idea with simpler computation. Define
$$f(x) = begin{cases} left(frac{a+b}2-xright)^{1/p},&text{ if } x in left[a, frac{a+b}2right] \
0,&text{ if } x in left[frac{a+b}2,bright]
end{cases}$$
$$g(x) = begin{cases} 0,&text{ if } x in left[a, frac{a+b}2right] \
left(x-frac{a+b}2right)^{1/p},&text{ if } x in left[frac{a+b}2,bright]
end{cases}$$
Notice that $f$ and $g$ have disjoint supports so $$f(x)+g(x) = left|frac{a+b}2-xright|^{1/p}$$ and $$f(x)-g(x) = operatorname{sign}left(frac{a+b}2-xright)left|frac{a+b}2-xright|^{1/p}$$
We get
$$|f|_p^2 = left(int_{left[a, frac{a+b}2right]} left(frac{a+b}2-xright),dxright)^{2/p} = left[frac{(b-a)^2}8right]^{2/p}$$
Similarly we also see $|g|_p^2 = left[frac{(b-a)^2}8right]^{2/p}$, $|f+g|_p^2 = left[frac{(b-a)^2}4right]^{2/p}$ and $|f-g|_p^2 = 0$.
Therefore
$$left[frac{(b-a)^2}4right]^{2/p} = |f+g|_p^2 = 4|f_p|^2 = 4left[frac{(b-a)^2}8right]^{2/p}$$
or $2 = 4^{p/2}$. This implies $p=2$.
$endgroup$
Here is a similar idea with simpler computation. Define
$$f(x) = begin{cases} left(frac{a+b}2-xright)^{1/p},&text{ if } x in left[a, frac{a+b}2right] \
0,&text{ if } x in left[frac{a+b}2,bright]
end{cases}$$
$$g(x) = begin{cases} 0,&text{ if } x in left[a, frac{a+b}2right] \
left(x-frac{a+b}2right)^{1/p},&text{ if } x in left[frac{a+b}2,bright]
end{cases}$$
Notice that $f$ and $g$ have disjoint supports so $$f(x)+g(x) = left|frac{a+b}2-xright|^{1/p}$$ and $$f(x)-g(x) = operatorname{sign}left(frac{a+b}2-xright)left|frac{a+b}2-xright|^{1/p}$$
We get
$$|f|_p^2 = left(int_{left[a, frac{a+b}2right]} left(frac{a+b}2-xright),dxright)^{2/p} = left[frac{(b-a)^2}8right]^{2/p}$$
Similarly we also see $|g|_p^2 = left[frac{(b-a)^2}8right]^{2/p}$, $|f+g|_p^2 = left[frac{(b-a)^2}4right]^{2/p}$ and $|f-g|_p^2 = 0$.
Therefore
$$left[frac{(b-a)^2}4right]^{2/p} = |f+g|_p^2 = 4|f_p|^2 = 4left[frac{(b-a)^2}8right]^{2/p}$$
or $2 = 4^{p/2}$. This implies $p=2$.
answered Dec 14 '18 at 22:08
mechanodroidmechanodroid
28.9k62648
28.9k62648
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039866%2fshow-that-the-lp-norm-f-lp-big-intb-a-fxp-big1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown