Proving that a sequence $[(a_{(m,n)}) = frac{v_n}{n},; n ge 1$] converges to $frac{sqrt m}{m}$, for any $m gt...











up vote
1
down vote

favorite












Given the natural numbers with $0 in mathbb N$.



Let $m in mathbb N$ with $m ge 1$.



We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:



$quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.



$quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.



$quad text{Set } a_{(m,n)} = frac{v_n}{n}$.




Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
converges to $frac{sqrt m}{m}?$




For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    Given the natural numbers with $0 in mathbb N$.



    Let $m in mathbb N$ with $m ge 1$.



    We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:



    $quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.



    $quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.



    $quad text{Set } a_{(m,n)} = frac{v_n}{n}$.




    Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
    converges to $frac{sqrt m}{m}?$




    For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Given the natural numbers with $0 in mathbb N$.



      Let $m in mathbb N$ with $m ge 1$.



      We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:



      $quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.



      $quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.



      $quad text{Set } a_{(m,n)} = frac{v_n}{n}$.




      Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
      converges to $frac{sqrt m}{m}?$




      For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.










      share|cite|improve this question















      Given the natural numbers with $0 in mathbb N$.



      Let $m in mathbb N$ with $m ge 1$.



      We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:



      $quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.



      $quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.



      $quad text{Set } a_{(m,n)} = frac{v_n}{n}$.




      Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
      converges to $frac{sqrt m}{m}?$




      For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.







      real-analysis sequences-and-series convergence






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago

























      asked 2 days ago









      CopyPasteIt

      3,3081525




      3,3081525






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
          $$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
          also, we have
          $$v_n leq sqrt{u_n} < v_n +1 Rightarrow
          frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
          frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
          frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$

          or
          $$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$



          But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
          $$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
          limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$

          and finally from $(2)$
          $$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$






          share|cite|improve this answer























          • Didn't check all the details but certainly looks like the remainder is no problem!
            – CopyPasteIt
            2 days ago


















          up vote
          1
          down vote













          The integer part satisfies
          begin{alignat*}{3}
          frac{n^2}{m}-1
          & le u_n
          && le frac{n^2}{m} \
          sqrt{u_n}-1
          & le v_n
          && le sqrt{u_n}
          end{alignat*}

          Plugging this in, we get
          $$
          sqrt{frac 1m - frac{1}{n^2}} - frac 1n
          %left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
          le frac{v_n}{n}
          le frac{1}{sqrt{m}}.
          $$

          The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.






          share|cite|improve this answer



















          • 1




            I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
            – CopyPasteIt
            2 days ago












          • Yes I did, thanks for pointing this out! (corrected)
            – Michał Miśkiewicz
            yesterday











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994328%2fproving-that-a-sequence-a-m-n-fracv-nn-n-ge-1-converges-to%23new-answer', 'question_page');
          }
          );

          Post as a guest
































          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
          $$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
          also, we have
          $$v_n leq sqrt{u_n} < v_n +1 Rightarrow
          frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
          frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
          frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$

          or
          $$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$



          But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
          $$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
          limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$

          and finally from $(2)$
          $$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$






          share|cite|improve this answer























          • Didn't check all the details but certainly looks like the remainder is no problem!
            – CopyPasteIt
            2 days ago















          up vote
          1
          down vote



          accepted










          Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
          $$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
          also, we have
          $$v_n leq sqrt{u_n} < v_n +1 Rightarrow
          frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
          frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
          frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$

          or
          $$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$



          But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
          $$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
          limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$

          and finally from $(2)$
          $$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$






          share|cite|improve this answer























          • Didn't check all the details but certainly looks like the remainder is no problem!
            – CopyPasteIt
            2 days ago













          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
          $$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
          also, we have
          $$v_n leq sqrt{u_n} < v_n +1 Rightarrow
          frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
          frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
          frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$

          or
          $$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$



          But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
          $$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
          limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$

          and finally from $(2)$
          $$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$






          share|cite|improve this answer














          Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
          $$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
          also, we have
          $$v_n leq sqrt{u_n} < v_n +1 Rightarrow
          frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
          frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
          frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$

          or
          $$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$



          But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
          $$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
          limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$

          and finally from $(2)$
          $$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 days ago

























          answered 2 days ago









          rtybase

          9,96221433




          9,96221433












          • Didn't check all the details but certainly looks like the remainder is no problem!
            – CopyPasteIt
            2 days ago


















          • Didn't check all the details but certainly looks like the remainder is no problem!
            – CopyPasteIt
            2 days ago
















          Didn't check all the details but certainly looks like the remainder is no problem!
          – CopyPasteIt
          2 days ago




          Didn't check all the details but certainly looks like the remainder is no problem!
          – CopyPasteIt
          2 days ago










          up vote
          1
          down vote













          The integer part satisfies
          begin{alignat*}{3}
          frac{n^2}{m}-1
          & le u_n
          && le frac{n^2}{m} \
          sqrt{u_n}-1
          & le v_n
          && le sqrt{u_n}
          end{alignat*}

          Plugging this in, we get
          $$
          sqrt{frac 1m - frac{1}{n^2}} - frac 1n
          %left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
          le frac{v_n}{n}
          le frac{1}{sqrt{m}}.
          $$

          The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.






          share|cite|improve this answer



















          • 1




            I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
            – CopyPasteIt
            2 days ago












          • Yes I did, thanks for pointing this out! (corrected)
            – Michał Miśkiewicz
            yesterday















          up vote
          1
          down vote













          The integer part satisfies
          begin{alignat*}{3}
          frac{n^2}{m}-1
          & le u_n
          && le frac{n^2}{m} \
          sqrt{u_n}-1
          & le v_n
          && le sqrt{u_n}
          end{alignat*}

          Plugging this in, we get
          $$
          sqrt{frac 1m - frac{1}{n^2}} - frac 1n
          %left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
          le frac{v_n}{n}
          le frac{1}{sqrt{m}}.
          $$

          The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.






          share|cite|improve this answer



















          • 1




            I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
            – CopyPasteIt
            2 days ago












          • Yes I did, thanks for pointing this out! (corrected)
            – Michał Miśkiewicz
            yesterday













          up vote
          1
          down vote










          up vote
          1
          down vote









          The integer part satisfies
          begin{alignat*}{3}
          frac{n^2}{m}-1
          & le u_n
          && le frac{n^2}{m} \
          sqrt{u_n}-1
          & le v_n
          && le sqrt{u_n}
          end{alignat*}

          Plugging this in, we get
          $$
          sqrt{frac 1m - frac{1}{n^2}} - frac 1n
          %left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
          le frac{v_n}{n}
          le frac{1}{sqrt{m}}.
          $$

          The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.






          share|cite|improve this answer














          The integer part satisfies
          begin{alignat*}{3}
          frac{n^2}{m}-1
          & le u_n
          && le frac{n^2}{m} \
          sqrt{u_n}-1
          & le v_n
          && le sqrt{u_n}
          end{alignat*}

          Plugging this in, we get
          $$
          sqrt{frac 1m - frac{1}{n^2}} - frac 1n
          %left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
          le frac{v_n}{n}
          le frac{1}{sqrt{m}}.
          $$

          The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered 2 days ago









          Michał Miśkiewicz

          2,733616




          2,733616








          • 1




            I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
            – CopyPasteIt
            2 days ago












          • Yes I did, thanks for pointing this out! (corrected)
            – Michał Miśkiewicz
            yesterday














          • 1




            I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
            – CopyPasteIt
            2 days ago












          • Yes I did, thanks for pointing this out! (corrected)
            – Michał Miśkiewicz
            yesterday








          1




          1




          I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
          – CopyPasteIt
          2 days ago






          I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
          – CopyPasteIt
          2 days ago














          Yes I did, thanks for pointing this out! (corrected)
          – Michał Miśkiewicz
          yesterday




          Yes I did, thanks for pointing this out! (corrected)
          – Michał Miśkiewicz
          yesterday


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994328%2fproving-that-a-sequence-a-m-n-fracv-nn-n-ge-1-converges-to%23new-answer', 'question_page');
          }
          );

          Post as a guest




















































































          Popular posts from this blog

          Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

          ComboBox Display Member on multiple fields

          Is it possible to collect Nectar points via Trainline?