Prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.











up vote
5
down vote

favorite
4












I have no idea how to do this question.



I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.



What I've tried:



$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.



Answers and hints appreciated!










share|cite|improve this question






















  • Try completing the square and then trig substituting.
    – Kemono Chen
    yesterday















up vote
5
down vote

favorite
4












I have no idea how to do this question.



I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.



What I've tried:



$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.



Answers and hints appreciated!










share|cite|improve this question






















  • Try completing the square and then trig substituting.
    – Kemono Chen
    yesterday













up vote
5
down vote

favorite
4









up vote
5
down vote

favorite
4






4





I have no idea how to do this question.



I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.



What I've tried:



$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.



Answers and hints appreciated!










share|cite|improve this question













I have no idea how to do this question.



I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.



What I've tried:



$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.



Answers and hints appreciated!







calculus integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









Yip Jung Hon

46911




46911












  • Try completing the square and then trig substituting.
    – Kemono Chen
    yesterday


















  • Try completing the square and then trig substituting.
    – Kemono Chen
    yesterday
















Try completing the square and then trig substituting.
– Kemono Chen
yesterday




Try completing the square and then trig substituting.
– Kemono Chen
yesterday










4 Answers
4






active

oldest

votes

















up vote
8
down vote



accepted










Differentiate with respect to $b$ gives
$$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
$$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
or
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
and one another derivative gives following result
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
now you have the answer with $a=dfrac12$ and $b=1$.






share|cite|improve this answer






























    up vote
    3
    down vote













    For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.



    This implies for any $t in (0,frac34)$, following expansion in $t$ converges:



    $$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$



    Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:



    $$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
    $$

    Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
    tell us the integral on LHS is



    $$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
    = frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$



    Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:



    $$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$



    This leads to



    $$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
    frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
    $$

    By comparing coefficients of $t^k$ on both sides, we obtain



    $$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
    = frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
    $$



    In particular, for $k = 2$, this give us



    $$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$






    share|cite|improve this answer






























      up vote
      2
      down vote













      For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
      $$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
      On the other hand
      $$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$






      share|cite|improve this answer




























        up vote
        0
        down vote













        $$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$



        Substitute $x+frac 12=u$



        $$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$



        Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$



        On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$



        Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$



        In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$






        share|cite|improve this answer























          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994751%2fprove-int-infty-infty-frac1x2x13dx-frac4-pi3-sqrt3%23new-answer', 'question_page');
          }
          );

          Post as a guest
































          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          8
          down vote



          accepted










          Differentiate with respect to $b$ gives
          $$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
          $$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
          or
          $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
          and one another derivative gives following result
          $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
          now you have the answer with $a=dfrac12$ and $b=1$.






          share|cite|improve this answer



























            up vote
            8
            down vote



            accepted










            Differentiate with respect to $b$ gives
            $$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
            $$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
            or
            $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
            and one another derivative gives following result
            $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
            now you have the answer with $a=dfrac12$ and $b=1$.






            share|cite|improve this answer

























              up vote
              8
              down vote



              accepted







              up vote
              8
              down vote



              accepted






              Differentiate with respect to $b$ gives
              $$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
              $$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
              or
              $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
              and one another derivative gives following result
              $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
              now you have the answer with $a=dfrac12$ and $b=1$.






              share|cite|improve this answer














              Differentiate with respect to $b$ gives
              $$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
              $$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
              or
              $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
              and one another derivative gives following result
              $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
              now you have the answer with $a=dfrac12$ and $b=1$.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited yesterday

























              answered yesterday









              Nosrati

              25.4k62252




              25.4k62252






















                  up vote
                  3
                  down vote













                  For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.



                  This implies for any $t in (0,frac34)$, following expansion in $t$ converges:



                  $$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$



                  Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:



                  $$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                  $$

                  Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
                  tell us the integral on LHS is



                  $$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
                  = frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$



                  Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:



                  $$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$



                  This leads to



                  $$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
                  frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
                  $$

                  By comparing coefficients of $t^k$ on both sides, we obtain



                  $$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                  = frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
                  $$



                  In particular, for $k = 2$, this give us



                  $$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$






                  share|cite|improve this answer



























                    up vote
                    3
                    down vote













                    For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.



                    This implies for any $t in (0,frac34)$, following expansion in $t$ converges:



                    $$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$



                    Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:



                    $$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                    $$

                    Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
                    tell us the integral on LHS is



                    $$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
                    = frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$



                    Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:



                    $$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$



                    This leads to



                    $$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
                    frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
                    $$

                    By comparing coefficients of $t^k$ on both sides, we obtain



                    $$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                    = frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
                    $$



                    In particular, for $k = 2$, this give us



                    $$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$






                    share|cite|improve this answer

























                      up vote
                      3
                      down vote










                      up vote
                      3
                      down vote









                      For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.



                      This implies for any $t in (0,frac34)$, following expansion in $t$ converges:



                      $$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$



                      Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:



                      $$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                      $$

                      Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
                      tell us the integral on LHS is



                      $$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
                      = frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$



                      Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:



                      $$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$



                      This leads to



                      $$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
                      frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
                      $$

                      By comparing coefficients of $t^k$ on both sides, we obtain



                      $$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                      = frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
                      $$



                      In particular, for $k = 2$, this give us



                      $$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$






                      share|cite|improve this answer














                      For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.



                      This implies for any $t in (0,frac34)$, following expansion in $t$ converges:



                      $$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$



                      Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:



                      $$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                      $$

                      Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
                      tell us the integral on LHS is



                      $$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
                      = frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$



                      Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:



                      $$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$



                      This leads to



                      $$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
                      frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
                      $$

                      By comparing coefficients of $t^k$ on both sides, we obtain



                      $$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                      = frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
                      $$



                      In particular, for $k = 2$, this give us



                      $$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited yesterday

























                      answered yesterday









                      achille hui

                      93.1k5127251




                      93.1k5127251






















                          up vote
                          2
                          down vote













                          For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
                          $$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
                          On the other hand
                          $$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$






                          share|cite|improve this answer

























                            up vote
                            2
                            down vote













                            For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
                            $$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
                            On the other hand
                            $$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$






                            share|cite|improve this answer























                              up vote
                              2
                              down vote










                              up vote
                              2
                              down vote









                              For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
                              $$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
                              On the other hand
                              $$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$






                              share|cite|improve this answer












                              For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
                              $$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
                              On the other hand
                              $$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered yesterday









                              Jack D'Aurizio

                              282k33274653




                              282k33274653






















                                  up vote
                                  0
                                  down vote













                                  $$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$



                                  Substitute $x+frac 12=u$



                                  $$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$



                                  Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$



                                  On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$



                                  Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$



                                  In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$






                                  share|cite|improve this answer



























                                    up vote
                                    0
                                    down vote













                                    $$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$



                                    Substitute $x+frac 12=u$



                                    $$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$



                                    Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$



                                    On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$



                                    Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$



                                    In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$






                                    share|cite|improve this answer

























                                      up vote
                                      0
                                      down vote










                                      up vote
                                      0
                                      down vote









                                      $$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$



                                      Substitute $x+frac 12=u$



                                      $$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$



                                      Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$



                                      On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$



                                      Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$



                                      In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$






                                      share|cite|improve this answer














                                      $$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$



                                      Substitute $x+frac 12=u$



                                      $$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$



                                      Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$



                                      On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$



                                      Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$



                                      In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited yesterday

























                                      answered yesterday









                                      Digamma

                                      5,8001437




                                      5,8001437






























                                           

                                          draft saved


                                          draft discarded



















































                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994751%2fprove-int-infty-infty-frac1x2x13dx-frac4-pi3-sqrt3%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest




















































































                                          Popular posts from this blog

                                          Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                                          ComboBox Display Member on multiple fields

                                          Is it possible to collect Nectar points via Trainline?