What is the convex hull of $text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)$?












2












$begingroup$


Let $u_i, i= 1,cdots,p$ and $v_j, j= 1,cdots,s$ be finitely many vectors in $mathbb{R}^n$. Show that



$$
text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)=text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
$$



We need to show



$$
x+y in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
$$



where $x in text{conv}(u_1,u_2,cdots,u_p)$ and $y in text{conv}(v_1,v_2,cdots,v_s)$. Also, we need to show



$$
z in text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)
$$



where $z in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$.



I have tried the following for the first one:



Let $x in text{conv}(u_1,u_2,cdots,u_p)$ so $x=sum_{i=1}^plambda_iu_i$ where $sum_{i=1}^plambda_i=1$. Also, Let $y in text{conv}(v_1,v_2,cdots,v_s)$ so $x=sum_{j=1}^smu_jv_j$ where $sum_{j=1}^smu_j=1$.



Summing them



$$x+y=lambda_1u_1+lambda_2u_2+cdots+lambda_pu_p+mu_1v_1+mu_2v_2+cdots+mu_sv_s.$$



Now the question is how we can get something in the form of $text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Let $u_i, i= 1,cdots,p$ and $v_j, j= 1,cdots,s$ be finitely many vectors in $mathbb{R}^n$. Show that



    $$
    text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)=text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
    $$



    We need to show



    $$
    x+y in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
    $$



    where $x in text{conv}(u_1,u_2,cdots,u_p)$ and $y in text{conv}(v_1,v_2,cdots,v_s)$. Also, we need to show



    $$
    z in text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)
    $$



    where $z in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$.



    I have tried the following for the first one:



    Let $x in text{conv}(u_1,u_2,cdots,u_p)$ so $x=sum_{i=1}^plambda_iu_i$ where $sum_{i=1}^plambda_i=1$. Also, Let $y in text{conv}(v_1,v_2,cdots,v_s)$ so $x=sum_{j=1}^smu_jv_j$ where $sum_{j=1}^smu_j=1$.



    Summing them



    $$x+y=lambda_1u_1+lambda_2u_2+cdots+lambda_pu_p+mu_1v_1+mu_2v_2+cdots+mu_sv_s.$$



    Now the question is how we can get something in the form of $text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$?










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      0



      $begingroup$


      Let $u_i, i= 1,cdots,p$ and $v_j, j= 1,cdots,s$ be finitely many vectors in $mathbb{R}^n$. Show that



      $$
      text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)=text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
      $$



      We need to show



      $$
      x+y in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
      $$



      where $x in text{conv}(u_1,u_2,cdots,u_p)$ and $y in text{conv}(v_1,v_2,cdots,v_s)$. Also, we need to show



      $$
      z in text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)
      $$



      where $z in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$.



      I have tried the following for the first one:



      Let $x in text{conv}(u_1,u_2,cdots,u_p)$ so $x=sum_{i=1}^plambda_iu_i$ where $sum_{i=1}^plambda_i=1$. Also, Let $y in text{conv}(v_1,v_2,cdots,v_s)$ so $x=sum_{j=1}^smu_jv_j$ where $sum_{j=1}^smu_j=1$.



      Summing them



      $$x+y=lambda_1u_1+lambda_2u_2+cdots+lambda_pu_p+mu_1v_1+mu_2v_2+cdots+mu_sv_s.$$



      Now the question is how we can get something in the form of $text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$?










      share|cite|improve this question











      $endgroup$




      Let $u_i, i= 1,cdots,p$ and $v_j, j= 1,cdots,s$ be finitely many vectors in $mathbb{R}^n$. Show that



      $$
      text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)=text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
      $$



      We need to show



      $$
      x+y in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}
      $$



      where $x in text{conv}(u_1,u_2,cdots,u_p)$ and $y in text{conv}(v_1,v_2,cdots,v_s)$. Also, we need to show



      $$
      z in text{conv}(u_1,u_2,cdots,u_p)+text{conv}(v_1,v_2,cdots,v_s)
      $$



      where $z in text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$.



      I have tried the following for the first one:



      Let $x in text{conv}(u_1,u_2,cdots,u_p)$ so $x=sum_{i=1}^plambda_iu_i$ where $sum_{i=1}^plambda_i=1$. Also, Let $y in text{conv}(v_1,v_2,cdots,v_s)$ so $x=sum_{j=1}^smu_jv_j$ where $sum_{j=1}^smu_j=1$.



      Summing them



      $$x+y=lambda_1u_1+lambda_2u_2+cdots+lambda_pu_p+mu_1v_1+mu_2v_2+cdots+mu_sv_s.$$



      Now the question is how we can get something in the form of $text{conv}{u_i+v_j mid i= 1,cdots,p, ,, j= 1,cdots,s}$?







      geometry vectors convex-analysis convex-geometry convex-hulls






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 14 '18 at 4:51









      Batominovski

      33.2k33293




      33.2k33293










      asked Dec 14 '18 at 3:48









      SepideSepide

      5048




      5048






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          We can use the match-up procedure as follows. Set $$lambda_i^0:=lambda_itext{ for each }i=1,2,ldots,p,,$$ $$mu_j^0:=mu_jtext{ for each }j=1,2,ldots,s,,$$ and $$z_0:=x+y,.$$ Suppose that we have $$z_k=sum_{i=1}^p,lambda_i^k,u_i+sum_{j=1}^s,mu_j^k,v_j$$ for some nonnegative integer $k$ and for some $lambda_i^k,mu_j^kin[0,1]$ such that $$s_k:=sum_{i=1}^p,lambda_i^k=sum_{j=1}^s,mu_j^k,.$$



          If $s_k=0$, then the process terminates at this point. If $s_k>0$, then we take $i_k:=min{i,|,lambda^k_ineq 0}$ and $j_k:=min{j,|,mu^k_jneq 0}$. Now define $w_k:=u_{i_k}+v_{j_k}$. Let $nu_k:=min{lambda_{i_k},mu_{j_k}}$. Then, set
          $$lambda_i^{k+1}:=left{begin{array}{ll}lambda_i^k&text{if }ineq i_k,,\ lambda_i^k-nu_k&text{if }i=i_k,,end{array}right}text{ for every }i=1,2,ldots,p,,$$
          $$mu_j^{k+1}:=left{begin{array}{ll}mu_j^k&text{if }jneq j_k,,\ mu_j^k-nu_k&text{if }j=j_k,,end{array}right}text{ for every } j=1,2,ldots,s,,$$
          and $$z_{k+1}:=z_k-nu_k,w_k,.$$



          Note that this algorithm cannot prolong indefinitely, since the number of nonzero coefficients amongst $lambda_1,lambda_2,ldots,lambda_p,mu_1,mu_2,ldots,mu_s$ decreases each step. When the loop is over (say, in $l+1$ steps, namely, with $s_1,s_2,ldots,s_l>0$ and $s_{l+1}=0$), we can see that $$x+y=sum_{k=1}^l ,nu_k,w_k,,$$
          where $nu_kin[0,1]$ for each $k=1,2,ldots,l$ with $sumlimits_{k=1}^l,nu_k=1$, and each $w_k$ is of the form $u_i+v_j$ for some $i=1,2,ldots,p$ and $j=1,2,ldots,s$. (It is obvious that $lleq p+s$, by the way.) This proves that
          $$begin{align}text{conv}left{u_1,u_2,ldots,u_pright}&+text{conv}left{v_1,v_2,ldots,v_sright}\&subseteq text{conv}big{u_i+v_j,big|,i=1,2,ldots,p text{and} j=1,2,ldots,sbig},.end{align}$$





          To prove the reversed inclusion, it is actually easier. Let $$ain text{conv}big{u_i+v_j,big|,i=1,2,ldots,ptext{ and }j=1,2,ldots,sbig},.$$ Then, there exist $alpha_{i,j}in[0,1]$ for $i=1,2,ldots,p$ and $j=1,2,ldots,s$ such that
          $$sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j}=1text{ and }a=sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j},left(u_i+v_jright),.$$



          By taking $beta_i:=sumlimits_{j=1}^s,alpha_{i,j}$ for each $i=1,2,ldots,p$ and $gamma_j:=sumlimits_{i=1}^p,alpha_{i,j}$ for every $j=1,2,ldots,s$, we see that $beta_iin[0,1]$ for each $i=1,2,ldots,p$, $gamma_jin[0,1]$ for every $j=1,2,ldots,s$, $sumlimits_{i=1}^p,beta_i=1$, and $sumlimits_{j=1}^s,gamma_j=1$. Thus, $a=b+c$, where
          $$b:=sum_{i=1}^p,beta_i,u_iin text{conv}left{u_1,u_2,ldots,u_pright}$$
          and
          $$c:=sum_{j=1}^s,gamma_j,v_jintext{conv}left{v_1,v_2,ldots,v_sright},.$$
          Hence,
          $$begin{align}text{conv}big{u_i+v_j,big|,i=1,2,ldots,p &text{and} j=1,2,ldots,sbig}\&subseteq text{conv}left{u_1,u_2,ldots,u_pright}+text{conv}left{v_1,v_2,ldots,v_sright},,end{align}$$
          as desired.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
            $endgroup$
            – Student
            Dec 18 '18 at 11:27












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038918%2fwhat-is-the-convex-hull-of-textconvu-1-u-2-cdots-u-p-textconvv-1-v-2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          We can use the match-up procedure as follows. Set $$lambda_i^0:=lambda_itext{ for each }i=1,2,ldots,p,,$$ $$mu_j^0:=mu_jtext{ for each }j=1,2,ldots,s,,$$ and $$z_0:=x+y,.$$ Suppose that we have $$z_k=sum_{i=1}^p,lambda_i^k,u_i+sum_{j=1}^s,mu_j^k,v_j$$ for some nonnegative integer $k$ and for some $lambda_i^k,mu_j^kin[0,1]$ such that $$s_k:=sum_{i=1}^p,lambda_i^k=sum_{j=1}^s,mu_j^k,.$$



          If $s_k=0$, then the process terminates at this point. If $s_k>0$, then we take $i_k:=min{i,|,lambda^k_ineq 0}$ and $j_k:=min{j,|,mu^k_jneq 0}$. Now define $w_k:=u_{i_k}+v_{j_k}$. Let $nu_k:=min{lambda_{i_k},mu_{j_k}}$. Then, set
          $$lambda_i^{k+1}:=left{begin{array}{ll}lambda_i^k&text{if }ineq i_k,,\ lambda_i^k-nu_k&text{if }i=i_k,,end{array}right}text{ for every }i=1,2,ldots,p,,$$
          $$mu_j^{k+1}:=left{begin{array}{ll}mu_j^k&text{if }jneq j_k,,\ mu_j^k-nu_k&text{if }j=j_k,,end{array}right}text{ for every } j=1,2,ldots,s,,$$
          and $$z_{k+1}:=z_k-nu_k,w_k,.$$



          Note that this algorithm cannot prolong indefinitely, since the number of nonzero coefficients amongst $lambda_1,lambda_2,ldots,lambda_p,mu_1,mu_2,ldots,mu_s$ decreases each step. When the loop is over (say, in $l+1$ steps, namely, with $s_1,s_2,ldots,s_l>0$ and $s_{l+1}=0$), we can see that $$x+y=sum_{k=1}^l ,nu_k,w_k,,$$
          where $nu_kin[0,1]$ for each $k=1,2,ldots,l$ with $sumlimits_{k=1}^l,nu_k=1$, and each $w_k$ is of the form $u_i+v_j$ for some $i=1,2,ldots,p$ and $j=1,2,ldots,s$. (It is obvious that $lleq p+s$, by the way.) This proves that
          $$begin{align}text{conv}left{u_1,u_2,ldots,u_pright}&+text{conv}left{v_1,v_2,ldots,v_sright}\&subseteq text{conv}big{u_i+v_j,big|,i=1,2,ldots,p text{and} j=1,2,ldots,sbig},.end{align}$$





          To prove the reversed inclusion, it is actually easier. Let $$ain text{conv}big{u_i+v_j,big|,i=1,2,ldots,ptext{ and }j=1,2,ldots,sbig},.$$ Then, there exist $alpha_{i,j}in[0,1]$ for $i=1,2,ldots,p$ and $j=1,2,ldots,s$ such that
          $$sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j}=1text{ and }a=sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j},left(u_i+v_jright),.$$



          By taking $beta_i:=sumlimits_{j=1}^s,alpha_{i,j}$ for each $i=1,2,ldots,p$ and $gamma_j:=sumlimits_{i=1}^p,alpha_{i,j}$ for every $j=1,2,ldots,s$, we see that $beta_iin[0,1]$ for each $i=1,2,ldots,p$, $gamma_jin[0,1]$ for every $j=1,2,ldots,s$, $sumlimits_{i=1}^p,beta_i=1$, and $sumlimits_{j=1}^s,gamma_j=1$. Thus, $a=b+c$, where
          $$b:=sum_{i=1}^p,beta_i,u_iin text{conv}left{u_1,u_2,ldots,u_pright}$$
          and
          $$c:=sum_{j=1}^s,gamma_j,v_jintext{conv}left{v_1,v_2,ldots,v_sright},.$$
          Hence,
          $$begin{align}text{conv}big{u_i+v_j,big|,i=1,2,ldots,p &text{and} j=1,2,ldots,sbig}\&subseteq text{conv}left{u_1,u_2,ldots,u_pright}+text{conv}left{v_1,v_2,ldots,v_sright},,end{align}$$
          as desired.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
            $endgroup$
            – Student
            Dec 18 '18 at 11:27
















          3












          $begingroup$

          We can use the match-up procedure as follows. Set $$lambda_i^0:=lambda_itext{ for each }i=1,2,ldots,p,,$$ $$mu_j^0:=mu_jtext{ for each }j=1,2,ldots,s,,$$ and $$z_0:=x+y,.$$ Suppose that we have $$z_k=sum_{i=1}^p,lambda_i^k,u_i+sum_{j=1}^s,mu_j^k,v_j$$ for some nonnegative integer $k$ and for some $lambda_i^k,mu_j^kin[0,1]$ such that $$s_k:=sum_{i=1}^p,lambda_i^k=sum_{j=1}^s,mu_j^k,.$$



          If $s_k=0$, then the process terminates at this point. If $s_k>0$, then we take $i_k:=min{i,|,lambda^k_ineq 0}$ and $j_k:=min{j,|,mu^k_jneq 0}$. Now define $w_k:=u_{i_k}+v_{j_k}$. Let $nu_k:=min{lambda_{i_k},mu_{j_k}}$. Then, set
          $$lambda_i^{k+1}:=left{begin{array}{ll}lambda_i^k&text{if }ineq i_k,,\ lambda_i^k-nu_k&text{if }i=i_k,,end{array}right}text{ for every }i=1,2,ldots,p,,$$
          $$mu_j^{k+1}:=left{begin{array}{ll}mu_j^k&text{if }jneq j_k,,\ mu_j^k-nu_k&text{if }j=j_k,,end{array}right}text{ for every } j=1,2,ldots,s,,$$
          and $$z_{k+1}:=z_k-nu_k,w_k,.$$



          Note that this algorithm cannot prolong indefinitely, since the number of nonzero coefficients amongst $lambda_1,lambda_2,ldots,lambda_p,mu_1,mu_2,ldots,mu_s$ decreases each step. When the loop is over (say, in $l+1$ steps, namely, with $s_1,s_2,ldots,s_l>0$ and $s_{l+1}=0$), we can see that $$x+y=sum_{k=1}^l ,nu_k,w_k,,$$
          where $nu_kin[0,1]$ for each $k=1,2,ldots,l$ with $sumlimits_{k=1}^l,nu_k=1$, and each $w_k$ is of the form $u_i+v_j$ for some $i=1,2,ldots,p$ and $j=1,2,ldots,s$. (It is obvious that $lleq p+s$, by the way.) This proves that
          $$begin{align}text{conv}left{u_1,u_2,ldots,u_pright}&+text{conv}left{v_1,v_2,ldots,v_sright}\&subseteq text{conv}big{u_i+v_j,big|,i=1,2,ldots,p text{and} j=1,2,ldots,sbig},.end{align}$$





          To prove the reversed inclusion, it is actually easier. Let $$ain text{conv}big{u_i+v_j,big|,i=1,2,ldots,ptext{ and }j=1,2,ldots,sbig},.$$ Then, there exist $alpha_{i,j}in[0,1]$ for $i=1,2,ldots,p$ and $j=1,2,ldots,s$ such that
          $$sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j}=1text{ and }a=sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j},left(u_i+v_jright),.$$



          By taking $beta_i:=sumlimits_{j=1}^s,alpha_{i,j}$ for each $i=1,2,ldots,p$ and $gamma_j:=sumlimits_{i=1}^p,alpha_{i,j}$ for every $j=1,2,ldots,s$, we see that $beta_iin[0,1]$ for each $i=1,2,ldots,p$, $gamma_jin[0,1]$ for every $j=1,2,ldots,s$, $sumlimits_{i=1}^p,beta_i=1$, and $sumlimits_{j=1}^s,gamma_j=1$. Thus, $a=b+c$, where
          $$b:=sum_{i=1}^p,beta_i,u_iin text{conv}left{u_1,u_2,ldots,u_pright}$$
          and
          $$c:=sum_{j=1}^s,gamma_j,v_jintext{conv}left{v_1,v_2,ldots,v_sright},.$$
          Hence,
          $$begin{align}text{conv}big{u_i+v_j,big|,i=1,2,ldots,p &text{and} j=1,2,ldots,sbig}\&subseteq text{conv}left{u_1,u_2,ldots,u_pright}+text{conv}left{v_1,v_2,ldots,v_sright},,end{align}$$
          as desired.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
            $endgroup$
            – Student
            Dec 18 '18 at 11:27














          3












          3








          3





          $begingroup$

          We can use the match-up procedure as follows. Set $$lambda_i^0:=lambda_itext{ for each }i=1,2,ldots,p,,$$ $$mu_j^0:=mu_jtext{ for each }j=1,2,ldots,s,,$$ and $$z_0:=x+y,.$$ Suppose that we have $$z_k=sum_{i=1}^p,lambda_i^k,u_i+sum_{j=1}^s,mu_j^k,v_j$$ for some nonnegative integer $k$ and for some $lambda_i^k,mu_j^kin[0,1]$ such that $$s_k:=sum_{i=1}^p,lambda_i^k=sum_{j=1}^s,mu_j^k,.$$



          If $s_k=0$, then the process terminates at this point. If $s_k>0$, then we take $i_k:=min{i,|,lambda^k_ineq 0}$ and $j_k:=min{j,|,mu^k_jneq 0}$. Now define $w_k:=u_{i_k}+v_{j_k}$. Let $nu_k:=min{lambda_{i_k},mu_{j_k}}$. Then, set
          $$lambda_i^{k+1}:=left{begin{array}{ll}lambda_i^k&text{if }ineq i_k,,\ lambda_i^k-nu_k&text{if }i=i_k,,end{array}right}text{ for every }i=1,2,ldots,p,,$$
          $$mu_j^{k+1}:=left{begin{array}{ll}mu_j^k&text{if }jneq j_k,,\ mu_j^k-nu_k&text{if }j=j_k,,end{array}right}text{ for every } j=1,2,ldots,s,,$$
          and $$z_{k+1}:=z_k-nu_k,w_k,.$$



          Note that this algorithm cannot prolong indefinitely, since the number of nonzero coefficients amongst $lambda_1,lambda_2,ldots,lambda_p,mu_1,mu_2,ldots,mu_s$ decreases each step. When the loop is over (say, in $l+1$ steps, namely, with $s_1,s_2,ldots,s_l>0$ and $s_{l+1}=0$), we can see that $$x+y=sum_{k=1}^l ,nu_k,w_k,,$$
          where $nu_kin[0,1]$ for each $k=1,2,ldots,l$ with $sumlimits_{k=1}^l,nu_k=1$, and each $w_k$ is of the form $u_i+v_j$ for some $i=1,2,ldots,p$ and $j=1,2,ldots,s$. (It is obvious that $lleq p+s$, by the way.) This proves that
          $$begin{align}text{conv}left{u_1,u_2,ldots,u_pright}&+text{conv}left{v_1,v_2,ldots,v_sright}\&subseteq text{conv}big{u_i+v_j,big|,i=1,2,ldots,p text{and} j=1,2,ldots,sbig},.end{align}$$





          To prove the reversed inclusion, it is actually easier. Let $$ain text{conv}big{u_i+v_j,big|,i=1,2,ldots,ptext{ and }j=1,2,ldots,sbig},.$$ Then, there exist $alpha_{i,j}in[0,1]$ for $i=1,2,ldots,p$ and $j=1,2,ldots,s$ such that
          $$sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j}=1text{ and }a=sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j},left(u_i+v_jright),.$$



          By taking $beta_i:=sumlimits_{j=1}^s,alpha_{i,j}$ for each $i=1,2,ldots,p$ and $gamma_j:=sumlimits_{i=1}^p,alpha_{i,j}$ for every $j=1,2,ldots,s$, we see that $beta_iin[0,1]$ for each $i=1,2,ldots,p$, $gamma_jin[0,1]$ for every $j=1,2,ldots,s$, $sumlimits_{i=1}^p,beta_i=1$, and $sumlimits_{j=1}^s,gamma_j=1$. Thus, $a=b+c$, where
          $$b:=sum_{i=1}^p,beta_i,u_iin text{conv}left{u_1,u_2,ldots,u_pright}$$
          and
          $$c:=sum_{j=1}^s,gamma_j,v_jintext{conv}left{v_1,v_2,ldots,v_sright},.$$
          Hence,
          $$begin{align}text{conv}big{u_i+v_j,big|,i=1,2,ldots,p &text{and} j=1,2,ldots,sbig}\&subseteq text{conv}left{u_1,u_2,ldots,u_pright}+text{conv}left{v_1,v_2,ldots,v_sright},,end{align}$$
          as desired.






          share|cite|improve this answer











          $endgroup$



          We can use the match-up procedure as follows. Set $$lambda_i^0:=lambda_itext{ for each }i=1,2,ldots,p,,$$ $$mu_j^0:=mu_jtext{ for each }j=1,2,ldots,s,,$$ and $$z_0:=x+y,.$$ Suppose that we have $$z_k=sum_{i=1}^p,lambda_i^k,u_i+sum_{j=1}^s,mu_j^k,v_j$$ for some nonnegative integer $k$ and for some $lambda_i^k,mu_j^kin[0,1]$ such that $$s_k:=sum_{i=1}^p,lambda_i^k=sum_{j=1}^s,mu_j^k,.$$



          If $s_k=0$, then the process terminates at this point. If $s_k>0$, then we take $i_k:=min{i,|,lambda^k_ineq 0}$ and $j_k:=min{j,|,mu^k_jneq 0}$. Now define $w_k:=u_{i_k}+v_{j_k}$. Let $nu_k:=min{lambda_{i_k},mu_{j_k}}$. Then, set
          $$lambda_i^{k+1}:=left{begin{array}{ll}lambda_i^k&text{if }ineq i_k,,\ lambda_i^k-nu_k&text{if }i=i_k,,end{array}right}text{ for every }i=1,2,ldots,p,,$$
          $$mu_j^{k+1}:=left{begin{array}{ll}mu_j^k&text{if }jneq j_k,,\ mu_j^k-nu_k&text{if }j=j_k,,end{array}right}text{ for every } j=1,2,ldots,s,,$$
          and $$z_{k+1}:=z_k-nu_k,w_k,.$$



          Note that this algorithm cannot prolong indefinitely, since the number of nonzero coefficients amongst $lambda_1,lambda_2,ldots,lambda_p,mu_1,mu_2,ldots,mu_s$ decreases each step. When the loop is over (say, in $l+1$ steps, namely, with $s_1,s_2,ldots,s_l>0$ and $s_{l+1}=0$), we can see that $$x+y=sum_{k=1}^l ,nu_k,w_k,,$$
          where $nu_kin[0,1]$ for each $k=1,2,ldots,l$ with $sumlimits_{k=1}^l,nu_k=1$, and each $w_k$ is of the form $u_i+v_j$ for some $i=1,2,ldots,p$ and $j=1,2,ldots,s$. (It is obvious that $lleq p+s$, by the way.) This proves that
          $$begin{align}text{conv}left{u_1,u_2,ldots,u_pright}&+text{conv}left{v_1,v_2,ldots,v_sright}\&subseteq text{conv}big{u_i+v_j,big|,i=1,2,ldots,p text{and} j=1,2,ldots,sbig},.end{align}$$





          To prove the reversed inclusion, it is actually easier. Let $$ain text{conv}big{u_i+v_j,big|,i=1,2,ldots,ptext{ and }j=1,2,ldots,sbig},.$$ Then, there exist $alpha_{i,j}in[0,1]$ for $i=1,2,ldots,p$ and $j=1,2,ldots,s$ such that
          $$sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j}=1text{ and }a=sum_{i=1}^p,sum_{j=1}^s,alpha_{i,j},left(u_i+v_jright),.$$



          By taking $beta_i:=sumlimits_{j=1}^s,alpha_{i,j}$ for each $i=1,2,ldots,p$ and $gamma_j:=sumlimits_{i=1}^p,alpha_{i,j}$ for every $j=1,2,ldots,s$, we see that $beta_iin[0,1]$ for each $i=1,2,ldots,p$, $gamma_jin[0,1]$ for every $j=1,2,ldots,s$, $sumlimits_{i=1}^p,beta_i=1$, and $sumlimits_{j=1}^s,gamma_j=1$. Thus, $a=b+c$, where
          $$b:=sum_{i=1}^p,beta_i,u_iin text{conv}left{u_1,u_2,ldots,u_pright}$$
          and
          $$c:=sum_{j=1}^s,gamma_j,v_jintext{conv}left{v_1,v_2,ldots,v_sright},.$$
          Hence,
          $$begin{align}text{conv}big{u_i+v_j,big|,i=1,2,ldots,p &text{and} j=1,2,ldots,sbig}\&subseteq text{conv}left{u_1,u_2,ldots,u_pright}+text{conv}left{v_1,v_2,ldots,v_sright},,end{align}$$
          as desired.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 14 '18 at 11:17

























          answered Dec 14 '18 at 4:32









          BatominovskiBatominovski

          33.2k33293




          33.2k33293












          • $begingroup$
            Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
            $endgroup$
            – Student
            Dec 18 '18 at 11:27


















          • $begingroup$
            Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
            $endgroup$
            – Student
            Dec 18 '18 at 11:27
















          $begingroup$
          Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
          $endgroup$
          – Student
          Dec 18 '18 at 11:27




          $begingroup$
          Dear Batominovski, If You have a few minutes, Can you check my solution.? If you want to write any comment.. Thank you very much.. math.stackexchange.com/q/3043357/460967
          $endgroup$
          – Student
          Dec 18 '18 at 11:27


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038918%2fwhat-is-the-convex-hull-of-textconvu-1-u-2-cdots-u-p-textconvv-1-v-2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

          ComboBox Display Member on multiple fields

          Is it possible to collect Nectar points via Trainline?