How to draw such a image? math and text is OK, but the horizontal and vertical lines really troubles me












0















image



How to draw such a image? math and text is OK, but the horizontal and vertical lines really troubles me.










share|improve this question




















  • 2





    Could you give us a compilable code? I think with TikZ this is quite possible.

    – JouleV
    Mar 30 at 1:53











  • @JouleV I do not knwo how to do.

    – xldd
    Mar 30 at 1:54






  • 2





    Any code is helpful. Your equation, your text, etc.

    – JouleV
    Mar 30 at 1:56
















0















image



How to draw such a image? math and text is OK, but the horizontal and vertical lines really troubles me.










share|improve this question




















  • 2





    Could you give us a compilable code? I think with TikZ this is quite possible.

    – JouleV
    Mar 30 at 1:53











  • @JouleV I do not knwo how to do.

    – xldd
    Mar 30 at 1:54






  • 2





    Any code is helpful. Your equation, your text, etc.

    – JouleV
    Mar 30 at 1:56














0












0








0








image



How to draw such a image? math and text is OK, but the horizontal and vertical lines really troubles me.










share|improve this question
















image



How to draw such a image? math and text is OK, but the horizontal and vertical lines really troubles me.







diagrams






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Mar 30 at 7:52









JouleV

11.7k22561




11.7k22561










asked Mar 30 at 1:51









xlddxldd

1035




1035








  • 2





    Could you give us a compilable code? I think with TikZ this is quite possible.

    – JouleV
    Mar 30 at 1:53











  • @JouleV I do not knwo how to do.

    – xldd
    Mar 30 at 1:54






  • 2





    Any code is helpful. Your equation, your text, etc.

    – JouleV
    Mar 30 at 1:56














  • 2





    Could you give us a compilable code? I think with TikZ this is quite possible.

    – JouleV
    Mar 30 at 1:53











  • @JouleV I do not knwo how to do.

    – xldd
    Mar 30 at 1:54






  • 2





    Any code is helpful. Your equation, your text, etc.

    – JouleV
    Mar 30 at 1:56








2




2





Could you give us a compilable code? I think with TikZ this is quite possible.

– JouleV
Mar 30 at 1:53





Could you give us a compilable code? I think with TikZ this is quite possible.

– JouleV
Mar 30 at 1:53













@JouleV I do not knwo how to do.

– xldd
Mar 30 at 1:54





@JouleV I do not knwo how to do.

– xldd
Mar 30 at 1:54




2




2





Any code is helpful. Your equation, your text, etc.

– JouleV
Mar 30 at 1:56





Any code is helpful. Your equation, your text, etc.

– JouleV
Mar 30 at 1:56










2 Answers
2






active

oldest

votes


















3














I'd recommend tikzmark for that. You have to run it three times.



documentclass[fleqn]{article}
usepackage{amsmath}
usepackage{tikz}
usetikzlibrary{tikzmark}
begin{document}
[ qquadqquadtikzmarknode[inner sep=1pt]{f}{f(x)}~tikzmarknode[inner sep=1pt]{eq}{=}~a_0
+sumlimits_{n=1}^infty left(a_n cos(n,x)+b_n cos(n,x)right)]
medskip
begin{tabular}{p{2.5cm}l}
tikzmarknode[inner sep=1pt]{b}{bounded} & tikzmarknode[inner sep=1pt]{p}{pointwise convergence}\
integrable & uniform convergence\
dots & dots \
end{tabular}
begin{tikzpicture}[overlay,remember picture]
draw ([yshift=0.5ex]f.south west) |- (f.south east) coordinate[pos=0.75] (f1)
-- ++ (0,0.5ex);
draw ([yshift=0.5ex]eq.south west) |- (eq.south east) coordinate[pos=0.75] (eq1)
-- ++ (0,0.5ex);
draw ([yshift=-0.5ex]b.north west) |- (b.north east) coordinate[pos=0.75] (b1)
-- ++ (0,-0.5ex);
draw ([yshift=-0.5ex]p.north west) |- (p.north east) coordinate[pos=0.75] (p1)
-- ++ (0,-0.5ex);
draw (f1) -- ++ (0,-1ex) |- ([yshift=1ex]b1) -- (b1);
draw (eq1) -- ++ (0,-1ex) |- ([yshift=1ex]p1) -- (p1);
end{tikzpicture}
end{document}


enter image description here



Or



documentclass[fleqn]{article}
usepackage{amsmath}
usepackage{tikz}
usetikzlibrary{tikzmark}
begin{document}
[ qquadqquadtikzmarknode[inner sep=1pt]{f}{f(x)}~tikzmarknode[inner sep=1pt]{eq}{=}~a_0
+sumlimits_{n=1}^infty left(a_n cos(n,x)+b_n cos(n,x)right)]
medskip
begin{tabular}{p{2.5cm}l}
tikzmarknode[inner sep=1pt]{b}{bounded} & tikzmarknode[inner sep=1pt]{p}{pointwise convergence}\
integrable & uniform convergence\
dots & dots \
end{tabular}
begin{tikzpicture}[overlay,remember picture,semithick]
draw ([yshift=0.5ex]f.south west) |- (f.south east) coordinate[pos=0.75] (f1)
-- ++ (0,0.5ex);
draw ([yshift=0.5ex]f.south-|eq.west) |- (f.south-|eq.east) coordinate[pos=0.75] (eq1)
-- ++ (0,0.5ex);
draw ([yshift=-0.5ex]b.north west) |- (b.north east) coordinate[pos=0.75] (b1)
-- ++ (0,-0.5ex);
draw ([yshift=-0.5ex]p.north west) |- (p.north east) coordinate[pos=0.75] (p1)
-- ++ (0,-0.5ex);
draw (f1) -- ++ (0,-1ex) |- ([yshift=1ex]b1) -- (b1);
draw (eq1) -- ++ (0,-1ex) |- ([yshift=1ex]p1) -- (p1);
end{tikzpicture}
end{document}


enter image description here






share|improve this answer

































    3














    With great help of remember picture:



    documentclass{article}
    usepackage{tikz}
    usetikzlibrary{calc,positioning}
    begin{document}
    [tikz[baseline,remember picture]
    node[inner xsep=0pt,minimum height=.6cm,anchor=base] (f) {$f(x)$};;
    tikz[baseline,remember picture]
    node[inner xsep=0pt,minimum height=.6cm,anchor=base] (e)
    {$=$vphantom{$f(x)$}};;a_0+sum_{n=1}^infty a_ncos(nx)+b_nsin(nx)]

    begin{tikzpicture}[overlay,remember picture]
    draw (f.south west)|-($(f.south east)+(0,-.1)$)--(f.south east);
    draw ($(f.south)+(0,-.1)$)--++(0,-.3)-|++(-1,-.3) node[below,align=left]
    {bounded\integrable\continuous\differentiable\$f'$ continuous};
    draw (e.south west)|-($(e.south east)+(0,-.1)$)--(e.south east);
    draw ($(e.south)+(0,-.1)$)--++(0,-.3)-|++(1,-.3)
    node[below right=0pt and -5ex,align=left]
    {pointwise convergence\uniform convergence\$L^2$ convergence\Cesaro mean convergence};
    end{tikzpicture}
    end{document}


    enter image description here





    However, due to the option overlay, the TikZ picture doesn't work really well with normal documents.



    enter image description here



    A tricky solution is to put vspace{}:



    documentclass{article}
    usepackage{tikz}
    usetikzlibrary{calc,positioning}
    usepackage{lipsum}
    begin{document}
    lipsum[1]
    [tikz[baseline,remember picture]
    node[inner xsep=0pt,minimum height=.6cm,anchor=base] (f) {$f(x)$};;
    tikz[baseline,remember picture]
    node[inner xsep=0pt,minimum height=.6cm,anchor=base] (e)
    {$=$vphantom{$f(x)$}};;a_0+sum_{n=1}^infty a_ncos(nx)+b_nsin(nx)]

    begin{tikzpicture}[overlay,remember picture]
    draw (f.south west)|-($(f.south east)+(0,-.1)$)--(f.south east);
    draw ($(f.south)+(0,-.1)$)--++(0,-.3)-|++(-1,-.3) node[below,align=left]
    {bounded\integrable\continuous\differentiable\$f'$ continuous};
    draw (e.south west)|-($(e.south east)+(0,-.1)$)--(e.south east);
    draw ($(e.south)+(0,-.1)$)--++(0,-.3)-|++(1,-.3)
    node[below right=0pt and -5ex,align=left]
    {pointwise convergence\uniform convergence\$L^2$ convergence\Cesaro mean convergence};
    end{tikzpicture}
    vspace{6baselineskip}

    lipsum[2]
    end{document}


    enter image description here



    Any suggestions are welcome.






    share|improve this answer


























      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "85"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482205%2fhow-to-draw-such-a-image-math-and-text-is-ok-but-the-horizontal-and-vertical-l%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3














      I'd recommend tikzmark for that. You have to run it three times.



      documentclass[fleqn]{article}
      usepackage{amsmath}
      usepackage{tikz}
      usetikzlibrary{tikzmark}
      begin{document}
      [ qquadqquadtikzmarknode[inner sep=1pt]{f}{f(x)}~tikzmarknode[inner sep=1pt]{eq}{=}~a_0
      +sumlimits_{n=1}^infty left(a_n cos(n,x)+b_n cos(n,x)right)]
      medskip
      begin{tabular}{p{2.5cm}l}
      tikzmarknode[inner sep=1pt]{b}{bounded} & tikzmarknode[inner sep=1pt]{p}{pointwise convergence}\
      integrable & uniform convergence\
      dots & dots \
      end{tabular}
      begin{tikzpicture}[overlay,remember picture]
      draw ([yshift=0.5ex]f.south west) |- (f.south east) coordinate[pos=0.75] (f1)
      -- ++ (0,0.5ex);
      draw ([yshift=0.5ex]eq.south west) |- (eq.south east) coordinate[pos=0.75] (eq1)
      -- ++ (0,0.5ex);
      draw ([yshift=-0.5ex]b.north west) |- (b.north east) coordinate[pos=0.75] (b1)
      -- ++ (0,-0.5ex);
      draw ([yshift=-0.5ex]p.north west) |- (p.north east) coordinate[pos=0.75] (p1)
      -- ++ (0,-0.5ex);
      draw (f1) -- ++ (0,-1ex) |- ([yshift=1ex]b1) -- (b1);
      draw (eq1) -- ++ (0,-1ex) |- ([yshift=1ex]p1) -- (p1);
      end{tikzpicture}
      end{document}


      enter image description here



      Or



      documentclass[fleqn]{article}
      usepackage{amsmath}
      usepackage{tikz}
      usetikzlibrary{tikzmark}
      begin{document}
      [ qquadqquadtikzmarknode[inner sep=1pt]{f}{f(x)}~tikzmarknode[inner sep=1pt]{eq}{=}~a_0
      +sumlimits_{n=1}^infty left(a_n cos(n,x)+b_n cos(n,x)right)]
      medskip
      begin{tabular}{p{2.5cm}l}
      tikzmarknode[inner sep=1pt]{b}{bounded} & tikzmarknode[inner sep=1pt]{p}{pointwise convergence}\
      integrable & uniform convergence\
      dots & dots \
      end{tabular}
      begin{tikzpicture}[overlay,remember picture,semithick]
      draw ([yshift=0.5ex]f.south west) |- (f.south east) coordinate[pos=0.75] (f1)
      -- ++ (0,0.5ex);
      draw ([yshift=0.5ex]f.south-|eq.west) |- (f.south-|eq.east) coordinate[pos=0.75] (eq1)
      -- ++ (0,0.5ex);
      draw ([yshift=-0.5ex]b.north west) |- (b.north east) coordinate[pos=0.75] (b1)
      -- ++ (0,-0.5ex);
      draw ([yshift=-0.5ex]p.north west) |- (p.north east) coordinate[pos=0.75] (p1)
      -- ++ (0,-0.5ex);
      draw (f1) -- ++ (0,-1ex) |- ([yshift=1ex]b1) -- (b1);
      draw (eq1) -- ++ (0,-1ex) |- ([yshift=1ex]p1) -- (p1);
      end{tikzpicture}
      end{document}


      enter image description here






      share|improve this answer






























        3














        I'd recommend tikzmark for that. You have to run it three times.



        documentclass[fleqn]{article}
        usepackage{amsmath}
        usepackage{tikz}
        usetikzlibrary{tikzmark}
        begin{document}
        [ qquadqquadtikzmarknode[inner sep=1pt]{f}{f(x)}~tikzmarknode[inner sep=1pt]{eq}{=}~a_0
        +sumlimits_{n=1}^infty left(a_n cos(n,x)+b_n cos(n,x)right)]
        medskip
        begin{tabular}{p{2.5cm}l}
        tikzmarknode[inner sep=1pt]{b}{bounded} & tikzmarknode[inner sep=1pt]{p}{pointwise convergence}\
        integrable & uniform convergence\
        dots & dots \
        end{tabular}
        begin{tikzpicture}[overlay,remember picture]
        draw ([yshift=0.5ex]f.south west) |- (f.south east) coordinate[pos=0.75] (f1)
        -- ++ (0,0.5ex);
        draw ([yshift=0.5ex]eq.south west) |- (eq.south east) coordinate[pos=0.75] (eq1)
        -- ++ (0,0.5ex);
        draw ([yshift=-0.5ex]b.north west) |- (b.north east) coordinate[pos=0.75] (b1)
        -- ++ (0,-0.5ex);
        draw ([yshift=-0.5ex]p.north west) |- (p.north east) coordinate[pos=0.75] (p1)
        -- ++ (0,-0.5ex);
        draw (f1) -- ++ (0,-1ex) |- ([yshift=1ex]b1) -- (b1);
        draw (eq1) -- ++ (0,-1ex) |- ([yshift=1ex]p1) -- (p1);
        end{tikzpicture}
        end{document}


        enter image description here



        Or



        documentclass[fleqn]{article}
        usepackage{amsmath}
        usepackage{tikz}
        usetikzlibrary{tikzmark}
        begin{document}
        [ qquadqquadtikzmarknode[inner sep=1pt]{f}{f(x)}~tikzmarknode[inner sep=1pt]{eq}{=}~a_0
        +sumlimits_{n=1}^infty left(a_n cos(n,x)+b_n cos(n,x)right)]
        medskip
        begin{tabular}{p{2.5cm}l}
        tikzmarknode[inner sep=1pt]{b}{bounded} & tikzmarknode[inner sep=1pt]{p}{pointwise convergence}\
        integrable & uniform convergence\
        dots & dots \
        end{tabular}
        begin{tikzpicture}[overlay,remember picture,semithick]
        draw ([yshift=0.5ex]f.south west) |- (f.south east) coordinate[pos=0.75] (f1)
        -- ++ (0,0.5ex);
        draw ([yshift=0.5ex]f.south-|eq.west) |- (f.south-|eq.east) coordinate[pos=0.75] (eq1)
        -- ++ (0,0.5ex);
        draw ([yshift=-0.5ex]b.north west) |- (b.north east) coordinate[pos=0.75] (b1)
        -- ++ (0,-0.5ex);
        draw ([yshift=-0.5ex]p.north west) |- (p.north east) coordinate[pos=0.75] (p1)
        -- ++ (0,-0.5ex);
        draw (f1) -- ++ (0,-1ex) |- ([yshift=1ex]b1) -- (b1);
        draw (eq1) -- ++ (0,-1ex) |- ([yshift=1ex]p1) -- (p1);
        end{tikzpicture}
        end{document}


        enter image description here






        share|improve this answer




























          3












          3








          3







          I'd recommend tikzmark for that. You have to run it three times.



          documentclass[fleqn]{article}
          usepackage{amsmath}
          usepackage{tikz}
          usetikzlibrary{tikzmark}
          begin{document}
          [ qquadqquadtikzmarknode[inner sep=1pt]{f}{f(x)}~tikzmarknode[inner sep=1pt]{eq}{=}~a_0
          +sumlimits_{n=1}^infty left(a_n cos(n,x)+b_n cos(n,x)right)]
          medskip
          begin{tabular}{p{2.5cm}l}
          tikzmarknode[inner sep=1pt]{b}{bounded} & tikzmarknode[inner sep=1pt]{p}{pointwise convergence}\
          integrable & uniform convergence\
          dots & dots \
          end{tabular}
          begin{tikzpicture}[overlay,remember picture]
          draw ([yshift=0.5ex]f.south west) |- (f.south east) coordinate[pos=0.75] (f1)
          -- ++ (0,0.5ex);
          draw ([yshift=0.5ex]eq.south west) |- (eq.south east) coordinate[pos=0.75] (eq1)
          -- ++ (0,0.5ex);
          draw ([yshift=-0.5ex]b.north west) |- (b.north east) coordinate[pos=0.75] (b1)
          -- ++ (0,-0.5ex);
          draw ([yshift=-0.5ex]p.north west) |- (p.north east) coordinate[pos=0.75] (p1)
          -- ++ (0,-0.5ex);
          draw (f1) -- ++ (0,-1ex) |- ([yshift=1ex]b1) -- (b1);
          draw (eq1) -- ++ (0,-1ex) |- ([yshift=1ex]p1) -- (p1);
          end{tikzpicture}
          end{document}


          enter image description here



          Or



          documentclass[fleqn]{article}
          usepackage{amsmath}
          usepackage{tikz}
          usetikzlibrary{tikzmark}
          begin{document}
          [ qquadqquadtikzmarknode[inner sep=1pt]{f}{f(x)}~tikzmarknode[inner sep=1pt]{eq}{=}~a_0
          +sumlimits_{n=1}^infty left(a_n cos(n,x)+b_n cos(n,x)right)]
          medskip
          begin{tabular}{p{2.5cm}l}
          tikzmarknode[inner sep=1pt]{b}{bounded} & tikzmarknode[inner sep=1pt]{p}{pointwise convergence}\
          integrable & uniform convergence\
          dots & dots \
          end{tabular}
          begin{tikzpicture}[overlay,remember picture,semithick]
          draw ([yshift=0.5ex]f.south west) |- (f.south east) coordinate[pos=0.75] (f1)
          -- ++ (0,0.5ex);
          draw ([yshift=0.5ex]f.south-|eq.west) |- (f.south-|eq.east) coordinate[pos=0.75] (eq1)
          -- ++ (0,0.5ex);
          draw ([yshift=-0.5ex]b.north west) |- (b.north east) coordinate[pos=0.75] (b1)
          -- ++ (0,-0.5ex);
          draw ([yshift=-0.5ex]p.north west) |- (p.north east) coordinate[pos=0.75] (p1)
          -- ++ (0,-0.5ex);
          draw (f1) -- ++ (0,-1ex) |- ([yshift=1ex]b1) -- (b1);
          draw (eq1) -- ++ (0,-1ex) |- ([yshift=1ex]p1) -- (p1);
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer















          I'd recommend tikzmark for that. You have to run it three times.



          documentclass[fleqn]{article}
          usepackage{amsmath}
          usepackage{tikz}
          usetikzlibrary{tikzmark}
          begin{document}
          [ qquadqquadtikzmarknode[inner sep=1pt]{f}{f(x)}~tikzmarknode[inner sep=1pt]{eq}{=}~a_0
          +sumlimits_{n=1}^infty left(a_n cos(n,x)+b_n cos(n,x)right)]
          medskip
          begin{tabular}{p{2.5cm}l}
          tikzmarknode[inner sep=1pt]{b}{bounded} & tikzmarknode[inner sep=1pt]{p}{pointwise convergence}\
          integrable & uniform convergence\
          dots & dots \
          end{tabular}
          begin{tikzpicture}[overlay,remember picture]
          draw ([yshift=0.5ex]f.south west) |- (f.south east) coordinate[pos=0.75] (f1)
          -- ++ (0,0.5ex);
          draw ([yshift=0.5ex]eq.south west) |- (eq.south east) coordinate[pos=0.75] (eq1)
          -- ++ (0,0.5ex);
          draw ([yshift=-0.5ex]b.north west) |- (b.north east) coordinate[pos=0.75] (b1)
          -- ++ (0,-0.5ex);
          draw ([yshift=-0.5ex]p.north west) |- (p.north east) coordinate[pos=0.75] (p1)
          -- ++ (0,-0.5ex);
          draw (f1) -- ++ (0,-1ex) |- ([yshift=1ex]b1) -- (b1);
          draw (eq1) -- ++ (0,-1ex) |- ([yshift=1ex]p1) -- (p1);
          end{tikzpicture}
          end{document}


          enter image description here



          Or



          documentclass[fleqn]{article}
          usepackage{amsmath}
          usepackage{tikz}
          usetikzlibrary{tikzmark}
          begin{document}
          [ qquadqquadtikzmarknode[inner sep=1pt]{f}{f(x)}~tikzmarknode[inner sep=1pt]{eq}{=}~a_0
          +sumlimits_{n=1}^infty left(a_n cos(n,x)+b_n cos(n,x)right)]
          medskip
          begin{tabular}{p{2.5cm}l}
          tikzmarknode[inner sep=1pt]{b}{bounded} & tikzmarknode[inner sep=1pt]{p}{pointwise convergence}\
          integrable & uniform convergence\
          dots & dots \
          end{tabular}
          begin{tikzpicture}[overlay,remember picture,semithick]
          draw ([yshift=0.5ex]f.south west) |- (f.south east) coordinate[pos=0.75] (f1)
          -- ++ (0,0.5ex);
          draw ([yshift=0.5ex]f.south-|eq.west) |- (f.south-|eq.east) coordinate[pos=0.75] (eq1)
          -- ++ (0,0.5ex);
          draw ([yshift=-0.5ex]b.north west) |- (b.north east) coordinate[pos=0.75] (b1)
          -- ++ (0,-0.5ex);
          draw ([yshift=-0.5ex]p.north west) |- (p.north east) coordinate[pos=0.75] (p1)
          -- ++ (0,-0.5ex);
          draw (f1) -- ++ (0,-1ex) |- ([yshift=1ex]b1) -- (b1);
          draw (eq1) -- ++ (0,-1ex) |- ([yshift=1ex]p1) -- (p1);
          end{tikzpicture}
          end{document}


          enter image description here







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Mar 30 at 2:27

























          answered Mar 30 at 2:15









          marmotmarmot

          116k5147278




          116k5147278























              3














              With great help of remember picture:



              documentclass{article}
              usepackage{tikz}
              usetikzlibrary{calc,positioning}
              begin{document}
              [tikz[baseline,remember picture]
              node[inner xsep=0pt,minimum height=.6cm,anchor=base] (f) {$f(x)$};;
              tikz[baseline,remember picture]
              node[inner xsep=0pt,minimum height=.6cm,anchor=base] (e)
              {$=$vphantom{$f(x)$}};;a_0+sum_{n=1}^infty a_ncos(nx)+b_nsin(nx)]

              begin{tikzpicture}[overlay,remember picture]
              draw (f.south west)|-($(f.south east)+(0,-.1)$)--(f.south east);
              draw ($(f.south)+(0,-.1)$)--++(0,-.3)-|++(-1,-.3) node[below,align=left]
              {bounded\integrable\continuous\differentiable\$f'$ continuous};
              draw (e.south west)|-($(e.south east)+(0,-.1)$)--(e.south east);
              draw ($(e.south)+(0,-.1)$)--++(0,-.3)-|++(1,-.3)
              node[below right=0pt and -5ex,align=left]
              {pointwise convergence\uniform convergence\$L^2$ convergence\Cesaro mean convergence};
              end{tikzpicture}
              end{document}


              enter image description here





              However, due to the option overlay, the TikZ picture doesn't work really well with normal documents.



              enter image description here



              A tricky solution is to put vspace{}:



              documentclass{article}
              usepackage{tikz}
              usetikzlibrary{calc,positioning}
              usepackage{lipsum}
              begin{document}
              lipsum[1]
              [tikz[baseline,remember picture]
              node[inner xsep=0pt,minimum height=.6cm,anchor=base] (f) {$f(x)$};;
              tikz[baseline,remember picture]
              node[inner xsep=0pt,minimum height=.6cm,anchor=base] (e)
              {$=$vphantom{$f(x)$}};;a_0+sum_{n=1}^infty a_ncos(nx)+b_nsin(nx)]

              begin{tikzpicture}[overlay,remember picture]
              draw (f.south west)|-($(f.south east)+(0,-.1)$)--(f.south east);
              draw ($(f.south)+(0,-.1)$)--++(0,-.3)-|++(-1,-.3) node[below,align=left]
              {bounded\integrable\continuous\differentiable\$f'$ continuous};
              draw (e.south west)|-($(e.south east)+(0,-.1)$)--(e.south east);
              draw ($(e.south)+(0,-.1)$)--++(0,-.3)-|++(1,-.3)
              node[below right=0pt and -5ex,align=left]
              {pointwise convergence\uniform convergence\$L^2$ convergence\Cesaro mean convergence};
              end{tikzpicture}
              vspace{6baselineskip}

              lipsum[2]
              end{document}


              enter image description here



              Any suggestions are welcome.






              share|improve this answer






























                3














                With great help of remember picture:



                documentclass{article}
                usepackage{tikz}
                usetikzlibrary{calc,positioning}
                begin{document}
                [tikz[baseline,remember picture]
                node[inner xsep=0pt,minimum height=.6cm,anchor=base] (f) {$f(x)$};;
                tikz[baseline,remember picture]
                node[inner xsep=0pt,minimum height=.6cm,anchor=base] (e)
                {$=$vphantom{$f(x)$}};;a_0+sum_{n=1}^infty a_ncos(nx)+b_nsin(nx)]

                begin{tikzpicture}[overlay,remember picture]
                draw (f.south west)|-($(f.south east)+(0,-.1)$)--(f.south east);
                draw ($(f.south)+(0,-.1)$)--++(0,-.3)-|++(-1,-.3) node[below,align=left]
                {bounded\integrable\continuous\differentiable\$f'$ continuous};
                draw (e.south west)|-($(e.south east)+(0,-.1)$)--(e.south east);
                draw ($(e.south)+(0,-.1)$)--++(0,-.3)-|++(1,-.3)
                node[below right=0pt and -5ex,align=left]
                {pointwise convergence\uniform convergence\$L^2$ convergence\Cesaro mean convergence};
                end{tikzpicture}
                end{document}


                enter image description here





                However, due to the option overlay, the TikZ picture doesn't work really well with normal documents.



                enter image description here



                A tricky solution is to put vspace{}:



                documentclass{article}
                usepackage{tikz}
                usetikzlibrary{calc,positioning}
                usepackage{lipsum}
                begin{document}
                lipsum[1]
                [tikz[baseline,remember picture]
                node[inner xsep=0pt,minimum height=.6cm,anchor=base] (f) {$f(x)$};;
                tikz[baseline,remember picture]
                node[inner xsep=0pt,minimum height=.6cm,anchor=base] (e)
                {$=$vphantom{$f(x)$}};;a_0+sum_{n=1}^infty a_ncos(nx)+b_nsin(nx)]

                begin{tikzpicture}[overlay,remember picture]
                draw (f.south west)|-($(f.south east)+(0,-.1)$)--(f.south east);
                draw ($(f.south)+(0,-.1)$)--++(0,-.3)-|++(-1,-.3) node[below,align=left]
                {bounded\integrable\continuous\differentiable\$f'$ continuous};
                draw (e.south west)|-($(e.south east)+(0,-.1)$)--(e.south east);
                draw ($(e.south)+(0,-.1)$)--++(0,-.3)-|++(1,-.3)
                node[below right=0pt and -5ex,align=left]
                {pointwise convergence\uniform convergence\$L^2$ convergence\Cesaro mean convergence};
                end{tikzpicture}
                vspace{6baselineskip}

                lipsum[2]
                end{document}


                enter image description here



                Any suggestions are welcome.






                share|improve this answer




























                  3












                  3








                  3







                  With great help of remember picture:



                  documentclass{article}
                  usepackage{tikz}
                  usetikzlibrary{calc,positioning}
                  begin{document}
                  [tikz[baseline,remember picture]
                  node[inner xsep=0pt,minimum height=.6cm,anchor=base] (f) {$f(x)$};;
                  tikz[baseline,remember picture]
                  node[inner xsep=0pt,minimum height=.6cm,anchor=base] (e)
                  {$=$vphantom{$f(x)$}};;a_0+sum_{n=1}^infty a_ncos(nx)+b_nsin(nx)]

                  begin{tikzpicture}[overlay,remember picture]
                  draw (f.south west)|-($(f.south east)+(0,-.1)$)--(f.south east);
                  draw ($(f.south)+(0,-.1)$)--++(0,-.3)-|++(-1,-.3) node[below,align=left]
                  {bounded\integrable\continuous\differentiable\$f'$ continuous};
                  draw (e.south west)|-($(e.south east)+(0,-.1)$)--(e.south east);
                  draw ($(e.south)+(0,-.1)$)--++(0,-.3)-|++(1,-.3)
                  node[below right=0pt and -5ex,align=left]
                  {pointwise convergence\uniform convergence\$L^2$ convergence\Cesaro mean convergence};
                  end{tikzpicture}
                  end{document}


                  enter image description here





                  However, due to the option overlay, the TikZ picture doesn't work really well with normal documents.



                  enter image description here



                  A tricky solution is to put vspace{}:



                  documentclass{article}
                  usepackage{tikz}
                  usetikzlibrary{calc,positioning}
                  usepackage{lipsum}
                  begin{document}
                  lipsum[1]
                  [tikz[baseline,remember picture]
                  node[inner xsep=0pt,minimum height=.6cm,anchor=base] (f) {$f(x)$};;
                  tikz[baseline,remember picture]
                  node[inner xsep=0pt,minimum height=.6cm,anchor=base] (e)
                  {$=$vphantom{$f(x)$}};;a_0+sum_{n=1}^infty a_ncos(nx)+b_nsin(nx)]

                  begin{tikzpicture}[overlay,remember picture]
                  draw (f.south west)|-($(f.south east)+(0,-.1)$)--(f.south east);
                  draw ($(f.south)+(0,-.1)$)--++(0,-.3)-|++(-1,-.3) node[below,align=left]
                  {bounded\integrable\continuous\differentiable\$f'$ continuous};
                  draw (e.south west)|-($(e.south east)+(0,-.1)$)--(e.south east);
                  draw ($(e.south)+(0,-.1)$)--++(0,-.3)-|++(1,-.3)
                  node[below right=0pt and -5ex,align=left]
                  {pointwise convergence\uniform convergence\$L^2$ convergence\Cesaro mean convergence};
                  end{tikzpicture}
                  vspace{6baselineskip}

                  lipsum[2]
                  end{document}


                  enter image description here



                  Any suggestions are welcome.






                  share|improve this answer















                  With great help of remember picture:



                  documentclass{article}
                  usepackage{tikz}
                  usetikzlibrary{calc,positioning}
                  begin{document}
                  [tikz[baseline,remember picture]
                  node[inner xsep=0pt,minimum height=.6cm,anchor=base] (f) {$f(x)$};;
                  tikz[baseline,remember picture]
                  node[inner xsep=0pt,minimum height=.6cm,anchor=base] (e)
                  {$=$vphantom{$f(x)$}};;a_0+sum_{n=1}^infty a_ncos(nx)+b_nsin(nx)]

                  begin{tikzpicture}[overlay,remember picture]
                  draw (f.south west)|-($(f.south east)+(0,-.1)$)--(f.south east);
                  draw ($(f.south)+(0,-.1)$)--++(0,-.3)-|++(-1,-.3) node[below,align=left]
                  {bounded\integrable\continuous\differentiable\$f'$ continuous};
                  draw (e.south west)|-($(e.south east)+(0,-.1)$)--(e.south east);
                  draw ($(e.south)+(0,-.1)$)--++(0,-.3)-|++(1,-.3)
                  node[below right=0pt and -5ex,align=left]
                  {pointwise convergence\uniform convergence\$L^2$ convergence\Cesaro mean convergence};
                  end{tikzpicture}
                  end{document}


                  enter image description here





                  However, due to the option overlay, the TikZ picture doesn't work really well with normal documents.



                  enter image description here



                  A tricky solution is to put vspace{}:



                  documentclass{article}
                  usepackage{tikz}
                  usetikzlibrary{calc,positioning}
                  usepackage{lipsum}
                  begin{document}
                  lipsum[1]
                  [tikz[baseline,remember picture]
                  node[inner xsep=0pt,minimum height=.6cm,anchor=base] (f) {$f(x)$};;
                  tikz[baseline,remember picture]
                  node[inner xsep=0pt,minimum height=.6cm,anchor=base] (e)
                  {$=$vphantom{$f(x)$}};;a_0+sum_{n=1}^infty a_ncos(nx)+b_nsin(nx)]

                  begin{tikzpicture}[overlay,remember picture]
                  draw (f.south west)|-($(f.south east)+(0,-.1)$)--(f.south east);
                  draw ($(f.south)+(0,-.1)$)--++(0,-.3)-|++(-1,-.3) node[below,align=left]
                  {bounded\integrable\continuous\differentiable\$f'$ continuous};
                  draw (e.south west)|-($(e.south east)+(0,-.1)$)--(e.south east);
                  draw ($(e.south)+(0,-.1)$)--++(0,-.3)-|++(1,-.3)
                  node[below right=0pt and -5ex,align=left]
                  {pointwise convergence\uniform convergence\$L^2$ convergence\Cesaro mean convergence};
                  end{tikzpicture}
                  vspace{6baselineskip}

                  lipsum[2]
                  end{document}


                  enter image description here



                  Any suggestions are welcome.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Mar 30 at 8:01

























                  answered Mar 30 at 2:15









                  JouleVJouleV

                  11.7k22561




                  11.7k22561






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f482205%2fhow-to-draw-such-a-image-math-and-text-is-ok-but-the-horizontal-and-vertical-l%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                      ComboBox Display Member on multiple fields

                      Is it possible to collect Nectar points via Trainline?