Proof about ordering-preserving function
Let $f: C_1 to C_2$ be an order preserving function. Assume that for $A subset C_1$ there exist $Sup(A) in C_1$ and $Sup(f(A)) in C_2$. Prove that $Sup(f(A)) leq f(Sup(A))$.
The statement seems obvious, but how would one go about proving this?
analysis functions upper-lower-bounds
add a comment |
Let $f: C_1 to C_2$ be an order preserving function. Assume that for $A subset C_1$ there exist $Sup(A) in C_1$ and $Sup(f(A)) in C_2$. Prove that $Sup(f(A)) leq f(Sup(A))$.
The statement seems obvious, but how would one go about proving this?
analysis functions upper-lower-bounds
Show (using the "order-preserving" assumption) that $f(sup(A))$ is an upper bound for $f(A)$. Then use that $sup(f(A))$ is the least upper bound of the same set $f(A)$.
– Andreas Blass
Nov 20 at 2:35
add a comment |
Let $f: C_1 to C_2$ be an order preserving function. Assume that for $A subset C_1$ there exist $Sup(A) in C_1$ and $Sup(f(A)) in C_2$. Prove that $Sup(f(A)) leq f(Sup(A))$.
The statement seems obvious, but how would one go about proving this?
analysis functions upper-lower-bounds
Let $f: C_1 to C_2$ be an order preserving function. Assume that for $A subset C_1$ there exist $Sup(A) in C_1$ and $Sup(f(A)) in C_2$. Prove that $Sup(f(A)) leq f(Sup(A))$.
The statement seems obvious, but how would one go about proving this?
analysis functions upper-lower-bounds
analysis functions upper-lower-bounds
asked Nov 19 at 23:33
user14513462563
917
917
Show (using the "order-preserving" assumption) that $f(sup(A))$ is an upper bound for $f(A)$. Then use that $sup(f(A))$ is the least upper bound of the same set $f(A)$.
– Andreas Blass
Nov 20 at 2:35
add a comment |
Show (using the "order-preserving" assumption) that $f(sup(A))$ is an upper bound for $f(A)$. Then use that $sup(f(A))$ is the least upper bound of the same set $f(A)$.
– Andreas Blass
Nov 20 at 2:35
Show (using the "order-preserving" assumption) that $f(sup(A))$ is an upper bound for $f(A)$. Then use that $sup(f(A))$ is the least upper bound of the same set $f(A)$.
– Andreas Blass
Nov 20 at 2:35
Show (using the "order-preserving" assumption) that $f(sup(A))$ is an upper bound for $f(A)$. Then use that $sup(f(A))$ is the least upper bound of the same set $f(A)$.
– Andreas Blass
Nov 20 at 2:35
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005689%2fproof-about-ordering-preserving-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005689%2fproof-about-ordering-preserving-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Show (using the "order-preserving" assumption) that $f(sup(A))$ is an upper bound for $f(A)$. Then use that $sup(f(A))$ is the least upper bound of the same set $f(A)$.
– Andreas Blass
Nov 20 at 2:35