Limit involving inverse functions












3












$begingroup$


When I am given the limit



$$limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}$$



would it be possible to evaluate it giving some substitution?



L'Hospital's rule seemed an option but I ended up going in circles.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    When I am given the limit



    $$limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}$$



    would it be possible to evaluate it giving some substitution?



    L'Hospital's rule seemed an option but I ended up going in circles.










    share|cite|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      When I am given the limit



      $$limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}$$



      would it be possible to evaluate it giving some substitution?



      L'Hospital's rule seemed an option but I ended up going in circles.










      share|cite|improve this question











      $endgroup$




      When I am given the limit



      $$limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}$$



      would it be possible to evaluate it giving some substitution?



      L'Hospital's rule seemed an option but I ended up going in circles.







      calculus limits inverse-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 19 at 14:36









      Michael Rybkin

      2,853416




      2,853416










      asked Feb 19 at 14:29









      MadCapMadCap

      433




      433






















          3 Answers
          3






          active

          oldest

          votes


















          7












          $begingroup$

          When $x>0$, $|x|=x$ and obviously if $xrightarrowinfty$, then $sqrt{x^2+1}rightarrowinfty$. And the last thing that you will need is the fact that the inverse tangent function approaches a value of $pi/2$ as its argument goes to infinity:



          $$
          limlimits_{x rightarrow infty}frac{xarctansqrt{x^2+1}}{sqrt{x^2+1}}=
          limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2}sqrt{1+frac{1}{x^2}}}=
          limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{|x|sqrt{1+frac{1}{x^2}}}=\
          limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{xsqrt{1+frac{1}{x^2}}}=
          limlimits_{x rightarrow infty}frac{arctansqrt{x^2 +1}}{sqrt{1+frac{1}{x^2}}}=
          frac{pi/2}{sqrt{1+0}}=frac{pi}{2}.
          $$






          share|cite|improve this answer











          $endgroup$





















            4












            $begingroup$

            You may proceed as follows:




            • Set $tan y = sqrt{1+x^2}$ and consider $y to frac{pi}{2}^-$


            begin{eqnarray*}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}
            & = & sqrt{tan^2y -1}frac{y}{tan y} \
            & = & frac{sqrt{sin^2 y - cos^2 y}}{sin y}cdot y\
            &stackrel{y to frac{pi}{2}^-}{longrightarrow} & frac{sqrt{1 - 0}}{1}cdot frac{pi}{2} = frac{pi}{2}
            end{eqnarray*}






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              Hint: It is true in general that if $lim f$ and $lim g$ both exist and are finite and nonzero, then $lim (fg)$ exists and equals $(lim f)(lim g)$.



              Take $f(x)=x/sqrt{x^2+1}$, $g(x)=tan^{-1}(x^2+1)$ and note that $xtoinfty$ implies $sqrt{x^2+1}toinfty$.






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3118910%2flimit-involving-inverse-functions%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                7












                $begingroup$

                When $x>0$, $|x|=x$ and obviously if $xrightarrowinfty$, then $sqrt{x^2+1}rightarrowinfty$. And the last thing that you will need is the fact that the inverse tangent function approaches a value of $pi/2$ as its argument goes to infinity:



                $$
                limlimits_{x rightarrow infty}frac{xarctansqrt{x^2+1}}{sqrt{x^2+1}}=
                limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2}sqrt{1+frac{1}{x^2}}}=
                limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{|x|sqrt{1+frac{1}{x^2}}}=\
                limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{xsqrt{1+frac{1}{x^2}}}=
                limlimits_{x rightarrow infty}frac{arctansqrt{x^2 +1}}{sqrt{1+frac{1}{x^2}}}=
                frac{pi/2}{sqrt{1+0}}=frac{pi}{2}.
                $$






                share|cite|improve this answer











                $endgroup$


















                  7












                  $begingroup$

                  When $x>0$, $|x|=x$ and obviously if $xrightarrowinfty$, then $sqrt{x^2+1}rightarrowinfty$. And the last thing that you will need is the fact that the inverse tangent function approaches a value of $pi/2$ as its argument goes to infinity:



                  $$
                  limlimits_{x rightarrow infty}frac{xarctansqrt{x^2+1}}{sqrt{x^2+1}}=
                  limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2}sqrt{1+frac{1}{x^2}}}=
                  limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{|x|sqrt{1+frac{1}{x^2}}}=\
                  limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{xsqrt{1+frac{1}{x^2}}}=
                  limlimits_{x rightarrow infty}frac{arctansqrt{x^2 +1}}{sqrt{1+frac{1}{x^2}}}=
                  frac{pi/2}{sqrt{1+0}}=frac{pi}{2}.
                  $$






                  share|cite|improve this answer











                  $endgroup$
















                    7












                    7








                    7





                    $begingroup$

                    When $x>0$, $|x|=x$ and obviously if $xrightarrowinfty$, then $sqrt{x^2+1}rightarrowinfty$. And the last thing that you will need is the fact that the inverse tangent function approaches a value of $pi/2$ as its argument goes to infinity:



                    $$
                    limlimits_{x rightarrow infty}frac{xarctansqrt{x^2+1}}{sqrt{x^2+1}}=
                    limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2}sqrt{1+frac{1}{x^2}}}=
                    limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{|x|sqrt{1+frac{1}{x^2}}}=\
                    limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{xsqrt{1+frac{1}{x^2}}}=
                    limlimits_{x rightarrow infty}frac{arctansqrt{x^2 +1}}{sqrt{1+frac{1}{x^2}}}=
                    frac{pi/2}{sqrt{1+0}}=frac{pi}{2}.
                    $$






                    share|cite|improve this answer











                    $endgroup$



                    When $x>0$, $|x|=x$ and obviously if $xrightarrowinfty$, then $sqrt{x^2+1}rightarrowinfty$. And the last thing that you will need is the fact that the inverse tangent function approaches a value of $pi/2$ as its argument goes to infinity:



                    $$
                    limlimits_{x rightarrow infty}frac{xarctansqrt{x^2+1}}{sqrt{x^2+1}}=
                    limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{sqrt{x^2}sqrt{1+frac{1}{x^2}}}=
                    limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{|x|sqrt{1+frac{1}{x^2}}}=\
                    limlimits_{x rightarrow infty}frac{xarctansqrt{x^2 +1}}{xsqrt{1+frac{1}{x^2}}}=
                    limlimits_{x rightarrow infty}frac{arctansqrt{x^2 +1}}{sqrt{1+frac{1}{x^2}}}=
                    frac{pi/2}{sqrt{1+0}}=frac{pi}{2}.
                    $$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Feb 19 at 18:39

























                    answered Feb 19 at 14:36









                    Michael RybkinMichael Rybkin

                    2,853416




                    2,853416























                        4












                        $begingroup$

                        You may proceed as follows:




                        • Set $tan y = sqrt{1+x^2}$ and consider $y to frac{pi}{2}^-$


                        begin{eqnarray*}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}
                        & = & sqrt{tan^2y -1}frac{y}{tan y} \
                        & = & frac{sqrt{sin^2 y - cos^2 y}}{sin y}cdot y\
                        &stackrel{y to frac{pi}{2}^-}{longrightarrow} & frac{sqrt{1 - 0}}{1}cdot frac{pi}{2} = frac{pi}{2}
                        end{eqnarray*}






                        share|cite|improve this answer









                        $endgroup$


















                          4












                          $begingroup$

                          You may proceed as follows:




                          • Set $tan y = sqrt{1+x^2}$ and consider $y to frac{pi}{2}^-$


                          begin{eqnarray*}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}
                          & = & sqrt{tan^2y -1}frac{y}{tan y} \
                          & = & frac{sqrt{sin^2 y - cos^2 y}}{sin y}cdot y\
                          &stackrel{y to frac{pi}{2}^-}{longrightarrow} & frac{sqrt{1 - 0}}{1}cdot frac{pi}{2} = frac{pi}{2}
                          end{eqnarray*}






                          share|cite|improve this answer









                          $endgroup$
















                            4












                            4








                            4





                            $begingroup$

                            You may proceed as follows:




                            • Set $tan y = sqrt{1+x^2}$ and consider $y to frac{pi}{2}^-$


                            begin{eqnarray*}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}
                            & = & sqrt{tan^2y -1}frac{y}{tan y} \
                            & = & frac{sqrt{sin^2 y - cos^2 y}}{sin y}cdot y\
                            &stackrel{y to frac{pi}{2}^-}{longrightarrow} & frac{sqrt{1 - 0}}{1}cdot frac{pi}{2} = frac{pi}{2}
                            end{eqnarray*}






                            share|cite|improve this answer









                            $endgroup$



                            You may proceed as follows:




                            • Set $tan y = sqrt{1+x^2}$ and consider $y to frac{pi}{2}^-$


                            begin{eqnarray*}frac{xarctansqrt{x^2 +1}}{sqrt{x^2+1}}
                            & = & sqrt{tan^2y -1}frac{y}{tan y} \
                            & = & frac{sqrt{sin^2 y - cos^2 y}}{sin y}cdot y\
                            &stackrel{y to frac{pi}{2}^-}{longrightarrow} & frac{sqrt{1 - 0}}{1}cdot frac{pi}{2} = frac{pi}{2}
                            end{eqnarray*}







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Feb 19 at 14:58









                            trancelocationtrancelocation

                            12.5k1826




                            12.5k1826























                                1












                                $begingroup$

                                Hint: It is true in general that if $lim f$ and $lim g$ both exist and are finite and nonzero, then $lim (fg)$ exists and equals $(lim f)(lim g)$.



                                Take $f(x)=x/sqrt{x^2+1}$, $g(x)=tan^{-1}(x^2+1)$ and note that $xtoinfty$ implies $sqrt{x^2+1}toinfty$.






                                share|cite|improve this answer









                                $endgroup$


















                                  1












                                  $begingroup$

                                  Hint: It is true in general that if $lim f$ and $lim g$ both exist and are finite and nonzero, then $lim (fg)$ exists and equals $(lim f)(lim g)$.



                                  Take $f(x)=x/sqrt{x^2+1}$, $g(x)=tan^{-1}(x^2+1)$ and note that $xtoinfty$ implies $sqrt{x^2+1}toinfty$.






                                  share|cite|improve this answer









                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    Hint: It is true in general that if $lim f$ and $lim g$ both exist and are finite and nonzero, then $lim (fg)$ exists and equals $(lim f)(lim g)$.



                                    Take $f(x)=x/sqrt{x^2+1}$, $g(x)=tan^{-1}(x^2+1)$ and note that $xtoinfty$ implies $sqrt{x^2+1}toinfty$.






                                    share|cite|improve this answer









                                    $endgroup$



                                    Hint: It is true in general that if $lim f$ and $lim g$ both exist and are finite and nonzero, then $lim (fg)$ exists and equals $(lim f)(lim g)$.



                                    Take $f(x)=x/sqrt{x^2+1}$, $g(x)=tan^{-1}(x^2+1)$ and note that $xtoinfty$ implies $sqrt{x^2+1}toinfty$.







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Feb 19 at 22:05









                                    MPWMPW

                                    30.4k12157




                                    30.4k12157






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3118910%2flimit-involving-inverse-functions%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        How to change which sound is reproduced for terminal bell?

                                        Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                                        Can I use Tabulator js library in my java Spring + Thymeleaf project?