Find the matrix representation of $psivarphi^{-2}+2varphi+I$












0












$begingroup$



Let $varphi$ and $psi$ be a linear transformation in vector space $V$, and given the inverse linear transformation of $varphi$ exists, and the matrix representation of $varphi$ and $psi$ on the first basis of $V$ to be matrices $A$ and $B$, respectively, the transition matrix of $V$ from the first basis to second basis is $P$. Find the matrix representation $psivarphi^{-2}+2varphi+I$ (where $I$ is the identity transformation on $V$) on the second basis of $V$.




I should find the matrix representation of $psivarphi^{-2}+2varphi+I$ separately, i.e. find the martix representation of $psivarphi^{-2}$, $2varphi$ and $I$, respectively, by linearity property. What makes me feel difficulty is to find the matrix representation of $psivarphi^{-2}$, any idea to deal with it?



[Transition matrix in here refers to the matrix associated with a change of basis for a vector space.(Source: Wikipedia)]



The answer given for this question is $P^{-1}BA^{-2}P+2P^{-1}AP+I_{n}$.
Thanks in advance!










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Note that for any matrices $A$ and $B$ you have $(P^{-1} A P) (P^{-1} B P) = P^{-1} A (P P^{-1}) B P = P^{-1} (AB) P$; i.e., it doesn't matter if you change the basis of matrices before or after multiplying them. Does this help?
    $endgroup$
    – Connor Harris
    Dec 3 '18 at 14:39












  • $begingroup$
    Nope, I am struggling in the inverse linear transformation of $varphi$ and its matrix representation on second basis of $V$.
    $endgroup$
    – weilam06
    Dec 3 '18 at 14:56
















0












$begingroup$



Let $varphi$ and $psi$ be a linear transformation in vector space $V$, and given the inverse linear transformation of $varphi$ exists, and the matrix representation of $varphi$ and $psi$ on the first basis of $V$ to be matrices $A$ and $B$, respectively, the transition matrix of $V$ from the first basis to second basis is $P$. Find the matrix representation $psivarphi^{-2}+2varphi+I$ (where $I$ is the identity transformation on $V$) on the second basis of $V$.




I should find the matrix representation of $psivarphi^{-2}+2varphi+I$ separately, i.e. find the martix representation of $psivarphi^{-2}$, $2varphi$ and $I$, respectively, by linearity property. What makes me feel difficulty is to find the matrix representation of $psivarphi^{-2}$, any idea to deal with it?



[Transition matrix in here refers to the matrix associated with a change of basis for a vector space.(Source: Wikipedia)]



The answer given for this question is $P^{-1}BA^{-2}P+2P^{-1}AP+I_{n}$.
Thanks in advance!










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Note that for any matrices $A$ and $B$ you have $(P^{-1} A P) (P^{-1} B P) = P^{-1} A (P P^{-1}) B P = P^{-1} (AB) P$; i.e., it doesn't matter if you change the basis of matrices before or after multiplying them. Does this help?
    $endgroup$
    – Connor Harris
    Dec 3 '18 at 14:39












  • $begingroup$
    Nope, I am struggling in the inverse linear transformation of $varphi$ and its matrix representation on second basis of $V$.
    $endgroup$
    – weilam06
    Dec 3 '18 at 14:56














0












0








0





$begingroup$



Let $varphi$ and $psi$ be a linear transformation in vector space $V$, and given the inverse linear transformation of $varphi$ exists, and the matrix representation of $varphi$ and $psi$ on the first basis of $V$ to be matrices $A$ and $B$, respectively, the transition matrix of $V$ from the first basis to second basis is $P$. Find the matrix representation $psivarphi^{-2}+2varphi+I$ (where $I$ is the identity transformation on $V$) on the second basis of $V$.




I should find the matrix representation of $psivarphi^{-2}+2varphi+I$ separately, i.e. find the martix representation of $psivarphi^{-2}$, $2varphi$ and $I$, respectively, by linearity property. What makes me feel difficulty is to find the matrix representation of $psivarphi^{-2}$, any idea to deal with it?



[Transition matrix in here refers to the matrix associated with a change of basis for a vector space.(Source: Wikipedia)]



The answer given for this question is $P^{-1}BA^{-2}P+2P^{-1}AP+I_{n}$.
Thanks in advance!










share|cite|improve this question









$endgroup$





Let $varphi$ and $psi$ be a linear transformation in vector space $V$, and given the inverse linear transformation of $varphi$ exists, and the matrix representation of $varphi$ and $psi$ on the first basis of $V$ to be matrices $A$ and $B$, respectively, the transition matrix of $V$ from the first basis to second basis is $P$. Find the matrix representation $psivarphi^{-2}+2varphi+I$ (where $I$ is the identity transformation on $V$) on the second basis of $V$.




I should find the matrix representation of $psivarphi^{-2}+2varphi+I$ separately, i.e. find the martix representation of $psivarphi^{-2}$, $2varphi$ and $I$, respectively, by linearity property. What makes me feel difficulty is to find the matrix representation of $psivarphi^{-2}$, any idea to deal with it?



[Transition matrix in here refers to the matrix associated with a change of basis for a vector space.(Source: Wikipedia)]



The answer given for this question is $P^{-1}BA^{-2}P+2P^{-1}AP+I_{n}$.
Thanks in advance!







linear-transformations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 3 '18 at 14:33









weilam06weilam06

14511




14511








  • 1




    $begingroup$
    Note that for any matrices $A$ and $B$ you have $(P^{-1} A P) (P^{-1} B P) = P^{-1} A (P P^{-1}) B P = P^{-1} (AB) P$; i.e., it doesn't matter if you change the basis of matrices before or after multiplying them. Does this help?
    $endgroup$
    – Connor Harris
    Dec 3 '18 at 14:39












  • $begingroup$
    Nope, I am struggling in the inverse linear transformation of $varphi$ and its matrix representation on second basis of $V$.
    $endgroup$
    – weilam06
    Dec 3 '18 at 14:56














  • 1




    $begingroup$
    Note that for any matrices $A$ and $B$ you have $(P^{-1} A P) (P^{-1} B P) = P^{-1} A (P P^{-1}) B P = P^{-1} (AB) P$; i.e., it doesn't matter if you change the basis of matrices before or after multiplying them. Does this help?
    $endgroup$
    – Connor Harris
    Dec 3 '18 at 14:39












  • $begingroup$
    Nope, I am struggling in the inverse linear transformation of $varphi$ and its matrix representation on second basis of $V$.
    $endgroup$
    – weilam06
    Dec 3 '18 at 14:56








1




1




$begingroup$
Note that for any matrices $A$ and $B$ you have $(P^{-1} A P) (P^{-1} B P) = P^{-1} A (P P^{-1}) B P = P^{-1} (AB) P$; i.e., it doesn't matter if you change the basis of matrices before or after multiplying them. Does this help?
$endgroup$
– Connor Harris
Dec 3 '18 at 14:39






$begingroup$
Note that for any matrices $A$ and $B$ you have $(P^{-1} A P) (P^{-1} B P) = P^{-1} A (P P^{-1}) B P = P^{-1} (AB) P$; i.e., it doesn't matter if you change the basis of matrices before or after multiplying them. Does this help?
$endgroup$
– Connor Harris
Dec 3 '18 at 14:39














$begingroup$
Nope, I am struggling in the inverse linear transformation of $varphi$ and its matrix representation on second basis of $V$.
$endgroup$
– weilam06
Dec 3 '18 at 14:56




$begingroup$
Nope, I am struggling in the inverse linear transformation of $varphi$ and its matrix representation on second basis of $V$.
$endgroup$
– weilam06
Dec 3 '18 at 14:56










1 Answer
1






active

oldest

votes


















0












$begingroup$

Hint:



remember that, if the inverse exist, $(AB)^{-1}=B^{-1}A^{-1}$,



so also:



$(P^{-1}AP)^{-1}=P^{-1}A^{-1}P$



and note that:



$(P^{-1}MP)^{2}=(P^{-1}MP)(P^{-1}MP)=P^{-1}M^2P$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    But $(P^{-1}BP)(P^{-1}AP)^{-2}=P^{-1}BP^{-1}A^{-2}P^{2}$.
    $endgroup$
    – weilam06
    Dec 3 '18 at 15:06












  • $begingroup$
    No it doesn't. $(P^{-1}XP)^k=P^{-1}X^k P$.
    $endgroup$
    – ancientmathematician
    Dec 3 '18 at 15:07












  • $begingroup$
    Oops, I know what's my mistake here. $(P^{-1}AP)^{k}=(P^{-1}AP)(P^{-1}AP)cdots(P^{-1}AP)=P^{-1}A^{k}P$ works here.
    $endgroup$
    – weilam06
    Dec 3 '18 at 15:08












  • $begingroup$
    I added to my hint another hint....:)
    $endgroup$
    – Emilio Novati
    Dec 3 '18 at 15:11











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024126%2ffind-the-matrix-representation-of-psi-varphi-22-varphii%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Hint:



remember that, if the inverse exist, $(AB)^{-1}=B^{-1}A^{-1}$,



so also:



$(P^{-1}AP)^{-1}=P^{-1}A^{-1}P$



and note that:



$(P^{-1}MP)^{2}=(P^{-1}MP)(P^{-1}MP)=P^{-1}M^2P$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    But $(P^{-1}BP)(P^{-1}AP)^{-2}=P^{-1}BP^{-1}A^{-2}P^{2}$.
    $endgroup$
    – weilam06
    Dec 3 '18 at 15:06












  • $begingroup$
    No it doesn't. $(P^{-1}XP)^k=P^{-1}X^k P$.
    $endgroup$
    – ancientmathematician
    Dec 3 '18 at 15:07












  • $begingroup$
    Oops, I know what's my mistake here. $(P^{-1}AP)^{k}=(P^{-1}AP)(P^{-1}AP)cdots(P^{-1}AP)=P^{-1}A^{k}P$ works here.
    $endgroup$
    – weilam06
    Dec 3 '18 at 15:08












  • $begingroup$
    I added to my hint another hint....:)
    $endgroup$
    – Emilio Novati
    Dec 3 '18 at 15:11
















0












$begingroup$

Hint:



remember that, if the inverse exist, $(AB)^{-1}=B^{-1}A^{-1}$,



so also:



$(P^{-1}AP)^{-1}=P^{-1}A^{-1}P$



and note that:



$(P^{-1}MP)^{2}=(P^{-1}MP)(P^{-1}MP)=P^{-1}M^2P$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    But $(P^{-1}BP)(P^{-1}AP)^{-2}=P^{-1}BP^{-1}A^{-2}P^{2}$.
    $endgroup$
    – weilam06
    Dec 3 '18 at 15:06












  • $begingroup$
    No it doesn't. $(P^{-1}XP)^k=P^{-1}X^k P$.
    $endgroup$
    – ancientmathematician
    Dec 3 '18 at 15:07












  • $begingroup$
    Oops, I know what's my mistake here. $(P^{-1}AP)^{k}=(P^{-1}AP)(P^{-1}AP)cdots(P^{-1}AP)=P^{-1}A^{k}P$ works here.
    $endgroup$
    – weilam06
    Dec 3 '18 at 15:08












  • $begingroup$
    I added to my hint another hint....:)
    $endgroup$
    – Emilio Novati
    Dec 3 '18 at 15:11














0












0








0





$begingroup$

Hint:



remember that, if the inverse exist, $(AB)^{-1}=B^{-1}A^{-1}$,



so also:



$(P^{-1}AP)^{-1}=P^{-1}A^{-1}P$



and note that:



$(P^{-1}MP)^{2}=(P^{-1}MP)(P^{-1}MP)=P^{-1}M^2P$






share|cite|improve this answer











$endgroup$



Hint:



remember that, if the inverse exist, $(AB)^{-1}=B^{-1}A^{-1}$,



so also:



$(P^{-1}AP)^{-1}=P^{-1}A^{-1}P$



and note that:



$(P^{-1}MP)^{2}=(P^{-1}MP)(P^{-1}MP)=P^{-1}M^2P$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 3 '18 at 15:10

























answered Dec 3 '18 at 15:02









Emilio NovatiEmilio Novati

52.1k43474




52.1k43474












  • $begingroup$
    But $(P^{-1}BP)(P^{-1}AP)^{-2}=P^{-1}BP^{-1}A^{-2}P^{2}$.
    $endgroup$
    – weilam06
    Dec 3 '18 at 15:06












  • $begingroup$
    No it doesn't. $(P^{-1}XP)^k=P^{-1}X^k P$.
    $endgroup$
    – ancientmathematician
    Dec 3 '18 at 15:07












  • $begingroup$
    Oops, I know what's my mistake here. $(P^{-1}AP)^{k}=(P^{-1}AP)(P^{-1}AP)cdots(P^{-1}AP)=P^{-1}A^{k}P$ works here.
    $endgroup$
    – weilam06
    Dec 3 '18 at 15:08












  • $begingroup$
    I added to my hint another hint....:)
    $endgroup$
    – Emilio Novati
    Dec 3 '18 at 15:11


















  • $begingroup$
    But $(P^{-1}BP)(P^{-1}AP)^{-2}=P^{-1}BP^{-1}A^{-2}P^{2}$.
    $endgroup$
    – weilam06
    Dec 3 '18 at 15:06












  • $begingroup$
    No it doesn't. $(P^{-1}XP)^k=P^{-1}X^k P$.
    $endgroup$
    – ancientmathematician
    Dec 3 '18 at 15:07












  • $begingroup$
    Oops, I know what's my mistake here. $(P^{-1}AP)^{k}=(P^{-1}AP)(P^{-1}AP)cdots(P^{-1}AP)=P^{-1}A^{k}P$ works here.
    $endgroup$
    – weilam06
    Dec 3 '18 at 15:08












  • $begingroup$
    I added to my hint another hint....:)
    $endgroup$
    – Emilio Novati
    Dec 3 '18 at 15:11
















$begingroup$
But $(P^{-1}BP)(P^{-1}AP)^{-2}=P^{-1}BP^{-1}A^{-2}P^{2}$.
$endgroup$
– weilam06
Dec 3 '18 at 15:06






$begingroup$
But $(P^{-1}BP)(P^{-1}AP)^{-2}=P^{-1}BP^{-1}A^{-2}P^{2}$.
$endgroup$
– weilam06
Dec 3 '18 at 15:06














$begingroup$
No it doesn't. $(P^{-1}XP)^k=P^{-1}X^k P$.
$endgroup$
– ancientmathematician
Dec 3 '18 at 15:07






$begingroup$
No it doesn't. $(P^{-1}XP)^k=P^{-1}X^k P$.
$endgroup$
– ancientmathematician
Dec 3 '18 at 15:07














$begingroup$
Oops, I know what's my mistake here. $(P^{-1}AP)^{k}=(P^{-1}AP)(P^{-1}AP)cdots(P^{-1}AP)=P^{-1}A^{k}P$ works here.
$endgroup$
– weilam06
Dec 3 '18 at 15:08






$begingroup$
Oops, I know what's my mistake here. $(P^{-1}AP)^{k}=(P^{-1}AP)(P^{-1}AP)cdots(P^{-1}AP)=P^{-1}A^{k}P$ works here.
$endgroup$
– weilam06
Dec 3 '18 at 15:08














$begingroup$
I added to my hint another hint....:)
$endgroup$
– Emilio Novati
Dec 3 '18 at 15:11




$begingroup$
I added to my hint another hint....:)
$endgroup$
– Emilio Novati
Dec 3 '18 at 15:11


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3024126%2ffind-the-matrix-representation-of-psi-varphi-22-varphii%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

ComboBox Display Member on multiple fields

Is it possible to collect Nectar points via Trainline?