Is $lim_{ntoinfty}int_0^1f_n(x)=int_0^1f(x)$ in this case?











up vote
0
down vote

favorite












Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$



This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.



I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?










share|cite|improve this question






















  • I edited out a few typos in the definition of $f$
    – Learner
    yesterday















up vote
0
down vote

favorite












Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$



This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.



I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?










share|cite|improve this question






















  • I edited out a few typos in the definition of $f$
    – Learner
    yesterday













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$



This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.



I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?










share|cite|improve this question













Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$



This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.



I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?







calculus real-analysis sequences-and-series definite-integrals uniform-convergence






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









Learner

1326




1326












  • I edited out a few typos in the definition of $f$
    – Learner
    yesterday


















  • I edited out a few typos in the definition of $f$
    – Learner
    yesterday
















I edited out a few typos in the definition of $f$
– Learner
yesterday




I edited out a few typos in the definition of $f$
– Learner
yesterday










3 Answers
3






active

oldest

votes

















up vote
1
down vote



accepted










You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,



$$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$



Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$



we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$






share|cite|improve this answer




























    up vote
    1
    down vote













    Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem






    share|cite|improve this answer




























      up vote
      1
      down vote













      $f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
      $$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$



      The result follows.






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














         

        draft saved


        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995293%2fis-lim-n-to-infty-int-01f-nx-int-01fx-in-this-case%23new-answer', 'question_page');
        }
        );

        Post as a guest
































        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        1
        down vote



        accepted










        You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,



        $$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$



        Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$



        we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$






        share|cite|improve this answer

























          up vote
          1
          down vote



          accepted










          You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,



          $$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$



          Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$



          we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$






          share|cite|improve this answer























            up vote
            1
            down vote



            accepted







            up vote
            1
            down vote



            accepted






            You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,



            $$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$



            Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$



            we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$






            share|cite|improve this answer












            You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,



            $$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$



            Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$



            we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered yesterday









            LeB

            733217




            733217






















                up vote
                1
                down vote













                Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem






                share|cite|improve this answer

























                  up vote
                  1
                  down vote













                  Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem






                  share|cite|improve this answer























                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem






                    share|cite|improve this answer












                    Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered yesterday









                    MotylaNogaTomkaMazura

                    6,221917




                    6,221917






















                        up vote
                        1
                        down vote













                        $f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
                        $$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$



                        The result follows.






                        share|cite|improve this answer

























                          up vote
                          1
                          down vote













                          $f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
                          $$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$



                          The result follows.






                          share|cite|improve this answer























                            up vote
                            1
                            down vote










                            up vote
                            1
                            down vote









                            $f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
                            $$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$



                            The result follows.






                            share|cite|improve this answer












                            $f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
                            $$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$



                            The result follows.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered yesterday









                            Fnacool

                            4,856511




                            4,856511






























                                 

                                draft saved


                                draft discarded



















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995293%2fis-lim-n-to-infty-int-01f-nx-int-01fx-in-this-case%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest




















































































                                Popular posts from this blog

                                Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                                ComboBox Display Member on multiple fields

                                Is it possible to collect Nectar points via Trainline?