Solving this equation: $3^{log_{4}x+frac{1}{2}}+3^{log_{4}x-frac{1}{2}}=sqrt{x}$












1












$begingroup$



Solve this equation:
$$3^{log_{4}x+frac{1}{2}}+3^{log_{4}x-frac{1}{2}}=sqrt{x}qquad (1)$$




I tried to make both sides of the equation have a same base and I started:



$$(1)Leftrightarrow 3^{log_{4}x}.sqrt{3}+ frac{3^{log_{4}x}}{sqrt{3}} = sqrt{x}$$
$$Leftrightarrow 3^{log_{4}x}.3+ 3^{log_{4}x} = sqrt{3x}$$
$$Leftrightarrow 4.3^{log_{4}x}= sqrt{3x}$$



At this step, I can't continue. Please help me!










share|cite|improve this question











$endgroup$

















    1












    $begingroup$



    Solve this equation:
    $$3^{log_{4}x+frac{1}{2}}+3^{log_{4}x-frac{1}{2}}=sqrt{x}qquad (1)$$




    I tried to make both sides of the equation have a same base and I started:



    $$(1)Leftrightarrow 3^{log_{4}x}.sqrt{3}+ frac{3^{log_{4}x}}{sqrt{3}} = sqrt{x}$$
    $$Leftrightarrow 3^{log_{4}x}.3+ 3^{log_{4}x} = sqrt{3x}$$
    $$Leftrightarrow 4.3^{log_{4}x}= sqrt{3x}$$



    At this step, I can't continue. Please help me!










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      2



      $begingroup$



      Solve this equation:
      $$3^{log_{4}x+frac{1}{2}}+3^{log_{4}x-frac{1}{2}}=sqrt{x}qquad (1)$$




      I tried to make both sides of the equation have a same base and I started:



      $$(1)Leftrightarrow 3^{log_{4}x}.sqrt{3}+ frac{3^{log_{4}x}}{sqrt{3}} = sqrt{x}$$
      $$Leftrightarrow 3^{log_{4}x}.3+ 3^{log_{4}x} = sqrt{3x}$$
      $$Leftrightarrow 4.3^{log_{4}x}= sqrt{3x}$$



      At this step, I can't continue. Please help me!










      share|cite|improve this question











      $endgroup$





      Solve this equation:
      $$3^{log_{4}x+frac{1}{2}}+3^{log_{4}x-frac{1}{2}}=sqrt{x}qquad (1)$$




      I tried to make both sides of the equation have a same base and I started:



      $$(1)Leftrightarrow 3^{log_{4}x}.sqrt{3}+ frac{3^{log_{4}x}}{sqrt{3}} = sqrt{x}$$
      $$Leftrightarrow 3^{log_{4}x}.3+ 3^{log_{4}x} = sqrt{3x}$$
      $$Leftrightarrow 4.3^{log_{4}x}= sqrt{3x}$$



      At this step, I can't continue. Please help me!







      logarithms






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 11 '18 at 6:45









      Robert Z

      101k1070143




      101k1070143










      asked Dec 11 '18 at 6:29









      Trần TuấnTrần Tuấn

      254




      254






















          5 Answers
          5






          active

          oldest

          votes


















          1












          $begingroup$

          First of all impose the necessary existence conditions, that is: $x > 0$ for the logarithms and $x geq 0$ for the square root.
          That is, eventually,



          $$x > 0$$



          for the whole equation.



          Then follow Siong Thye Goh reasoning, obtaining the final equation he wrote.



          At that point:



          $$1 + log_4(3)log_4(x) = frac{log_4(3)}{2} + frac{log_4(x)}{2}$$



          $$log_4(x)left(log_4(3) - frac{1}{2}right) = frac{log_4(3)}{2} - 1$$



          $$log_4(x) = frac{frac{log_4(3)}{2} - 1}{log_4(3) - frac{1}{2}} = frac{log_4(3)-2}{2log_4(3)-1}$$



          To solve for $x$ take the exponential base 4 of both terms, getting:



          $$large x = large 4^{frac{log_4(3)-2}{2log_4(3)-1}}$$






          share|cite|improve this answer









          $endgroup$





















            4












            $begingroup$

            Guide:



            Taking $log_4$ on both sides,



            $$1 + log_4 3 cdot log_4 x = frac12 (log_43 + log_4 x)$$



            Solve for $log_4 x$.






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              You may also continue as follows:



              $$begin{eqnarray*}
              4 cdot 3^{2 cdot log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
              4 cdot 9^{log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
              4 cdot 4^{log_4{9} cdot log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
              (sqrt{x})^{log_4{9} -1} &= & frac{sqrt{3}}{4} Leftrightarrow\
              x & = & left( frac{sqrt{3}}{4}right)^{frac{log_4{9}-1}{2}} approx 0.0571725
              end{eqnarray*}$$






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                Let's generalise a bit, with parameters say $a, b in (0, infty)setminus {1}$ subject to $a^2 neq b$ and let's try to solve the equation:



                $$a^{log_{b}x+frac{1}{2}}+a^{log_{b}x-frac{1}{2}}=sqrt{x}$$



                Notice that the left-hand side can be rewritten as



                $$a^{log_{b}x}(sqrt{a}+frac{1}{sqrt{a}})=b^{log_{b}acdot log_{b}x}(sqrt{a}+frac{1}{sqrt{a}})=x^{log_{b}a}(sqrt{a}+frac{1}{sqrt{a}})$$



                As you are dealing exclusively with strictly positive reals, your given equation is equivalent to its square, so to speak:



                $$frac{(a+1)^2}{a}x^{2log_{b}a}=x$$



                which leads to



                $$x^{2log_{b}a-1}=frac{a}{(a+1)^2}$$



                Since the right-hand side is never $1$ (you can try to see why), this is why we initially imposed the relation of inequality between $a$ and $b$; it is satisfied in the particular case of your equation.



                We finally have the solution:



                $$x=left(frac{a}{(a+1)^2}right)^{frac{1}{2log_{b}a-1}}$$






                share|cite|improve this answer









                $endgroup$





















                  0












                  $begingroup$

                  Same solution with same approach
                  But simplified with substitution
                  Solution






                  share|cite|improve this answer









                  $endgroup$














                    Your Answer





                    StackExchange.ifUsing("editor", function () {
                    return StackExchange.using("mathjaxEditing", function () {
                    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                    });
                    });
                    }, "mathjax-editing");

                    StackExchange.ready(function() {
                    var channelOptions = {
                    tags: "".split(" "),
                    id: "69"
                    };
                    initTagRenderer("".split(" "), "".split(" "), channelOptions);

                    StackExchange.using("externalEditor", function() {
                    // Have to fire editor after snippets, if snippets enabled
                    if (StackExchange.settings.snippets.snippetsEnabled) {
                    StackExchange.using("snippets", function() {
                    createEditor();
                    });
                    }
                    else {
                    createEditor();
                    }
                    });

                    function createEditor() {
                    StackExchange.prepareEditor({
                    heartbeatType: 'answer',
                    autoActivateHeartbeat: false,
                    convertImagesToLinks: true,
                    noModals: true,
                    showLowRepImageUploadWarning: true,
                    reputationToPostImages: 10,
                    bindNavPrevention: true,
                    postfix: "",
                    imageUploader: {
                    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                    allowUrls: true
                    },
                    noCode: true, onDemand: true,
                    discardSelector: ".discard-answer"
                    ,immediatelyShowMarkdownHelp:true
                    });


                    }
                    });














                    draft saved

                    draft discarded


















                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034963%2fsolving-this-equation-3-log-4x-frac123-log-4x-frac12-sqr%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown

























                    5 Answers
                    5






                    active

                    oldest

                    votes








                    5 Answers
                    5






                    active

                    oldest

                    votes









                    active

                    oldest

                    votes






                    active

                    oldest

                    votes









                    1












                    $begingroup$

                    First of all impose the necessary existence conditions, that is: $x > 0$ for the logarithms and $x geq 0$ for the square root.
                    That is, eventually,



                    $$x > 0$$



                    for the whole equation.



                    Then follow Siong Thye Goh reasoning, obtaining the final equation he wrote.



                    At that point:



                    $$1 + log_4(3)log_4(x) = frac{log_4(3)}{2} + frac{log_4(x)}{2}$$



                    $$log_4(x)left(log_4(3) - frac{1}{2}right) = frac{log_4(3)}{2} - 1$$



                    $$log_4(x) = frac{frac{log_4(3)}{2} - 1}{log_4(3) - frac{1}{2}} = frac{log_4(3)-2}{2log_4(3)-1}$$



                    To solve for $x$ take the exponential base 4 of both terms, getting:



                    $$large x = large 4^{frac{log_4(3)-2}{2log_4(3)-1}}$$






                    share|cite|improve this answer









                    $endgroup$


















                      1












                      $begingroup$

                      First of all impose the necessary existence conditions, that is: $x > 0$ for the logarithms and $x geq 0$ for the square root.
                      That is, eventually,



                      $$x > 0$$



                      for the whole equation.



                      Then follow Siong Thye Goh reasoning, obtaining the final equation he wrote.



                      At that point:



                      $$1 + log_4(3)log_4(x) = frac{log_4(3)}{2} + frac{log_4(x)}{2}$$



                      $$log_4(x)left(log_4(3) - frac{1}{2}right) = frac{log_4(3)}{2} - 1$$



                      $$log_4(x) = frac{frac{log_4(3)}{2} - 1}{log_4(3) - frac{1}{2}} = frac{log_4(3)-2}{2log_4(3)-1}$$



                      To solve for $x$ take the exponential base 4 of both terms, getting:



                      $$large x = large 4^{frac{log_4(3)-2}{2log_4(3)-1}}$$






                      share|cite|improve this answer









                      $endgroup$
















                        1












                        1








                        1





                        $begingroup$

                        First of all impose the necessary existence conditions, that is: $x > 0$ for the logarithms and $x geq 0$ for the square root.
                        That is, eventually,



                        $$x > 0$$



                        for the whole equation.



                        Then follow Siong Thye Goh reasoning, obtaining the final equation he wrote.



                        At that point:



                        $$1 + log_4(3)log_4(x) = frac{log_4(3)}{2} + frac{log_4(x)}{2}$$



                        $$log_4(x)left(log_4(3) - frac{1}{2}right) = frac{log_4(3)}{2} - 1$$



                        $$log_4(x) = frac{frac{log_4(3)}{2} - 1}{log_4(3) - frac{1}{2}} = frac{log_4(3)-2}{2log_4(3)-1}$$



                        To solve for $x$ take the exponential base 4 of both terms, getting:



                        $$large x = large 4^{frac{log_4(3)-2}{2log_4(3)-1}}$$






                        share|cite|improve this answer









                        $endgroup$



                        First of all impose the necessary existence conditions, that is: $x > 0$ for the logarithms and $x geq 0$ for the square root.
                        That is, eventually,



                        $$x > 0$$



                        for the whole equation.



                        Then follow Siong Thye Goh reasoning, obtaining the final equation he wrote.



                        At that point:



                        $$1 + log_4(3)log_4(x) = frac{log_4(3)}{2} + frac{log_4(x)}{2}$$



                        $$log_4(x)left(log_4(3) - frac{1}{2}right) = frac{log_4(3)}{2} - 1$$



                        $$log_4(x) = frac{frac{log_4(3)}{2} - 1}{log_4(3) - frac{1}{2}} = frac{log_4(3)-2}{2log_4(3)-1}$$



                        To solve for $x$ take the exponential base 4 of both terms, getting:



                        $$large x = large 4^{frac{log_4(3)-2}{2log_4(3)-1}}$$







                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Dec 11 '18 at 6:49









                        Von NeumannVon Neumann

                        16.5k72545




                        16.5k72545























                            4












                            $begingroup$

                            Guide:



                            Taking $log_4$ on both sides,



                            $$1 + log_4 3 cdot log_4 x = frac12 (log_43 + log_4 x)$$



                            Solve for $log_4 x$.






                            share|cite|improve this answer









                            $endgroup$


















                              4












                              $begingroup$

                              Guide:



                              Taking $log_4$ on both sides,



                              $$1 + log_4 3 cdot log_4 x = frac12 (log_43 + log_4 x)$$



                              Solve for $log_4 x$.






                              share|cite|improve this answer









                              $endgroup$
















                                4












                                4








                                4





                                $begingroup$

                                Guide:



                                Taking $log_4$ on both sides,



                                $$1 + log_4 3 cdot log_4 x = frac12 (log_43 + log_4 x)$$



                                Solve for $log_4 x$.






                                share|cite|improve this answer









                                $endgroup$



                                Guide:



                                Taking $log_4$ on both sides,



                                $$1 + log_4 3 cdot log_4 x = frac12 (log_43 + log_4 x)$$



                                Solve for $log_4 x$.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Dec 11 '18 at 6:32









                                Siong Thye GohSiong Thye Goh

                                103k1468119




                                103k1468119























                                    0












                                    $begingroup$

                                    You may also continue as follows:



                                    $$begin{eqnarray*}
                                    4 cdot 3^{2 cdot log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                    4 cdot 9^{log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                    4 cdot 4^{log_4{9} cdot log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                    (sqrt{x})^{log_4{9} -1} &= & frac{sqrt{3}}{4} Leftrightarrow\
                                    x & = & left( frac{sqrt{3}}{4}right)^{frac{log_4{9}-1}{2}} approx 0.0571725
                                    end{eqnarray*}$$






                                    share|cite|improve this answer









                                    $endgroup$


















                                      0












                                      $begingroup$

                                      You may also continue as follows:



                                      $$begin{eqnarray*}
                                      4 cdot 3^{2 cdot log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                      4 cdot 9^{log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                      4 cdot 4^{log_4{9} cdot log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                      (sqrt{x})^{log_4{9} -1} &= & frac{sqrt{3}}{4} Leftrightarrow\
                                      x & = & left( frac{sqrt{3}}{4}right)^{frac{log_4{9}-1}{2}} approx 0.0571725
                                      end{eqnarray*}$$






                                      share|cite|improve this answer









                                      $endgroup$
















                                        0












                                        0








                                        0





                                        $begingroup$

                                        You may also continue as follows:



                                        $$begin{eqnarray*}
                                        4 cdot 3^{2 cdot log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                        4 cdot 9^{log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                        4 cdot 4^{log_4{9} cdot log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                        (sqrt{x})^{log_4{9} -1} &= & frac{sqrt{3}}{4} Leftrightarrow\
                                        x & = & left( frac{sqrt{3}}{4}right)^{frac{log_4{9}-1}{2}} approx 0.0571725
                                        end{eqnarray*}$$






                                        share|cite|improve this answer









                                        $endgroup$



                                        You may also continue as follows:



                                        $$begin{eqnarray*}
                                        4 cdot 3^{2 cdot log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                        4 cdot 9^{log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                        4 cdot 4^{log_4{9} cdot log_{4}sqrt{x}} &= & sqrt{3}sqrt{x} Leftrightarrow \
                                        (sqrt{x})^{log_4{9} -1} &= & frac{sqrt{3}}{4} Leftrightarrow\
                                        x & = & left( frac{sqrt{3}}{4}right)^{frac{log_4{9}-1}{2}} approx 0.0571725
                                        end{eqnarray*}$$







                                        share|cite|improve this answer












                                        share|cite|improve this answer



                                        share|cite|improve this answer










                                        answered Dec 11 '18 at 6:56









                                        trancelocationtrancelocation

                                        13.2k1827




                                        13.2k1827























                                            0












                                            $begingroup$

                                            Let's generalise a bit, with parameters say $a, b in (0, infty)setminus {1}$ subject to $a^2 neq b$ and let's try to solve the equation:



                                            $$a^{log_{b}x+frac{1}{2}}+a^{log_{b}x-frac{1}{2}}=sqrt{x}$$



                                            Notice that the left-hand side can be rewritten as



                                            $$a^{log_{b}x}(sqrt{a}+frac{1}{sqrt{a}})=b^{log_{b}acdot log_{b}x}(sqrt{a}+frac{1}{sqrt{a}})=x^{log_{b}a}(sqrt{a}+frac{1}{sqrt{a}})$$



                                            As you are dealing exclusively with strictly positive reals, your given equation is equivalent to its square, so to speak:



                                            $$frac{(a+1)^2}{a}x^{2log_{b}a}=x$$



                                            which leads to



                                            $$x^{2log_{b}a-1}=frac{a}{(a+1)^2}$$



                                            Since the right-hand side is never $1$ (you can try to see why), this is why we initially imposed the relation of inequality between $a$ and $b$; it is satisfied in the particular case of your equation.



                                            We finally have the solution:



                                            $$x=left(frac{a}{(a+1)^2}right)^{frac{1}{2log_{b}a-1}}$$






                                            share|cite|improve this answer









                                            $endgroup$


















                                              0












                                              $begingroup$

                                              Let's generalise a bit, with parameters say $a, b in (0, infty)setminus {1}$ subject to $a^2 neq b$ and let's try to solve the equation:



                                              $$a^{log_{b}x+frac{1}{2}}+a^{log_{b}x-frac{1}{2}}=sqrt{x}$$



                                              Notice that the left-hand side can be rewritten as



                                              $$a^{log_{b}x}(sqrt{a}+frac{1}{sqrt{a}})=b^{log_{b}acdot log_{b}x}(sqrt{a}+frac{1}{sqrt{a}})=x^{log_{b}a}(sqrt{a}+frac{1}{sqrt{a}})$$



                                              As you are dealing exclusively with strictly positive reals, your given equation is equivalent to its square, so to speak:



                                              $$frac{(a+1)^2}{a}x^{2log_{b}a}=x$$



                                              which leads to



                                              $$x^{2log_{b}a-1}=frac{a}{(a+1)^2}$$



                                              Since the right-hand side is never $1$ (you can try to see why), this is why we initially imposed the relation of inequality between $a$ and $b$; it is satisfied in the particular case of your equation.



                                              We finally have the solution:



                                              $$x=left(frac{a}{(a+1)^2}right)^{frac{1}{2log_{b}a-1}}$$






                                              share|cite|improve this answer









                                              $endgroup$
















                                                0












                                                0








                                                0





                                                $begingroup$

                                                Let's generalise a bit, with parameters say $a, b in (0, infty)setminus {1}$ subject to $a^2 neq b$ and let's try to solve the equation:



                                                $$a^{log_{b}x+frac{1}{2}}+a^{log_{b}x-frac{1}{2}}=sqrt{x}$$



                                                Notice that the left-hand side can be rewritten as



                                                $$a^{log_{b}x}(sqrt{a}+frac{1}{sqrt{a}})=b^{log_{b}acdot log_{b}x}(sqrt{a}+frac{1}{sqrt{a}})=x^{log_{b}a}(sqrt{a}+frac{1}{sqrt{a}})$$



                                                As you are dealing exclusively with strictly positive reals, your given equation is equivalent to its square, so to speak:



                                                $$frac{(a+1)^2}{a}x^{2log_{b}a}=x$$



                                                which leads to



                                                $$x^{2log_{b}a-1}=frac{a}{(a+1)^2}$$



                                                Since the right-hand side is never $1$ (you can try to see why), this is why we initially imposed the relation of inequality between $a$ and $b$; it is satisfied in the particular case of your equation.



                                                We finally have the solution:



                                                $$x=left(frac{a}{(a+1)^2}right)^{frac{1}{2log_{b}a-1}}$$






                                                share|cite|improve this answer









                                                $endgroup$



                                                Let's generalise a bit, with parameters say $a, b in (0, infty)setminus {1}$ subject to $a^2 neq b$ and let's try to solve the equation:



                                                $$a^{log_{b}x+frac{1}{2}}+a^{log_{b}x-frac{1}{2}}=sqrt{x}$$



                                                Notice that the left-hand side can be rewritten as



                                                $$a^{log_{b}x}(sqrt{a}+frac{1}{sqrt{a}})=b^{log_{b}acdot log_{b}x}(sqrt{a}+frac{1}{sqrt{a}})=x^{log_{b}a}(sqrt{a}+frac{1}{sqrt{a}})$$



                                                As you are dealing exclusively with strictly positive reals, your given equation is equivalent to its square, so to speak:



                                                $$frac{(a+1)^2}{a}x^{2log_{b}a}=x$$



                                                which leads to



                                                $$x^{2log_{b}a-1}=frac{a}{(a+1)^2}$$



                                                Since the right-hand side is never $1$ (you can try to see why), this is why we initially imposed the relation of inequality between $a$ and $b$; it is satisfied in the particular case of your equation.



                                                We finally have the solution:



                                                $$x=left(frac{a}{(a+1)^2}right)^{frac{1}{2log_{b}a-1}}$$







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Dec 11 '18 at 7:02









                                                ΑΘΩΑΘΩ

                                                3436




                                                3436























                                                    0












                                                    $begingroup$

                                                    Same solution with same approach
                                                    But simplified with substitution
                                                    Solution






                                                    share|cite|improve this answer









                                                    $endgroup$


















                                                      0












                                                      $begingroup$

                                                      Same solution with same approach
                                                      But simplified with substitution
                                                      Solution






                                                      share|cite|improve this answer









                                                      $endgroup$
















                                                        0












                                                        0








                                                        0





                                                        $begingroup$

                                                        Same solution with same approach
                                                        But simplified with substitution
                                                        Solution






                                                        share|cite|improve this answer









                                                        $endgroup$



                                                        Same solution with same approach
                                                        But simplified with substitution
                                                        Solution







                                                        share|cite|improve this answer












                                                        share|cite|improve this answer



                                                        share|cite|improve this answer










                                                        answered Dec 11 '18 at 7:24









                                                        user579689user579689

                                                        113




                                                        113






























                                                            draft saved

                                                            draft discarded




















































                                                            Thanks for contributing an answer to Mathematics Stack Exchange!


                                                            • Please be sure to answer the question. Provide details and share your research!

                                                            But avoid



                                                            • Asking for help, clarification, or responding to other answers.

                                                            • Making statements based on opinion; back them up with references or personal experience.


                                                            Use MathJax to format equations. MathJax reference.


                                                            To learn more, see our tips on writing great answers.




                                                            draft saved


                                                            draft discarded














                                                            StackExchange.ready(
                                                            function () {
                                                            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034963%2fsolving-this-equation-3-log-4x-frac123-log-4x-frac12-sqr%23new-answer', 'question_page');
                                                            }
                                                            );

                                                            Post as a guest















                                                            Required, but never shown





















































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown

































                                                            Required, but never shown














                                                            Required, but never shown












                                                            Required, but never shown







                                                            Required, but never shown







                                                            Popular posts from this blog

                                                            Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                                                            ComboBox Display Member on multiple fields

                                                            Is it possible to collect Nectar points via Trainline?