Properties of Norm spaces












1












$begingroup$


Suppose $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. The goal of this problem is to show
begin{align*}
lim_{pto infty}|f|_p=|f|_{infty}.
end{align*}

First, prove that
begin{align*}
lim_{ptoinfty}|f|_pleq |f|_{infty}.
end{align*}
Proof:
Assume $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. By definition,
begin{align*}
|f|_p=left(int_E|f|^pdmright)^{1/p}leq left(int_E|f|_{infty}^pright)^{1/p}=|f|_{infty}cdot m(E)^{1/p}<infty.
end{align*}

Letting $pto infty$, we have that $m(E)^{1/p}to 1$. Therefore,
begin{align*}
lim_{ptoinfty}|f|_pleq |f|_{infty}.
end{align*}



I'm not sure if I am missing anything here or need to justify being able to bring the limit inside and applying to $m(E)$.



Next, I need to prove that
begin{align*}
lim_{ptoinfty}|f|_pgeq |f|_{infty}-epsilon
end{align*}

for any $epsilon>0$. Hint: Look at the set
begin{align*}
F={xin E:|f|>|f|_{infty}-epsilon}.
end{align*}



I'm stuck on this part and would appreciate any help, thanks.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Suppose $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. The goal of this problem is to show
    begin{align*}
    lim_{pto infty}|f|_p=|f|_{infty}.
    end{align*}

    First, prove that
    begin{align*}
    lim_{ptoinfty}|f|_pleq |f|_{infty}.
    end{align*}
    Proof:
    Assume $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. By definition,
    begin{align*}
    |f|_p=left(int_E|f|^pdmright)^{1/p}leq left(int_E|f|_{infty}^pright)^{1/p}=|f|_{infty}cdot m(E)^{1/p}<infty.
    end{align*}

    Letting $pto infty$, we have that $m(E)^{1/p}to 1$. Therefore,
    begin{align*}
    lim_{ptoinfty}|f|_pleq |f|_{infty}.
    end{align*}



    I'm not sure if I am missing anything here or need to justify being able to bring the limit inside and applying to $m(E)$.



    Next, I need to prove that
    begin{align*}
    lim_{ptoinfty}|f|_pgeq |f|_{infty}-epsilon
    end{align*}

    for any $epsilon>0$. Hint: Look at the set
    begin{align*}
    F={xin E:|f|>|f|_{infty}-epsilon}.
    end{align*}



    I'm stuck on this part and would appreciate any help, thanks.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Suppose $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. The goal of this problem is to show
      begin{align*}
      lim_{pto infty}|f|_p=|f|_{infty}.
      end{align*}

      First, prove that
      begin{align*}
      lim_{ptoinfty}|f|_pleq |f|_{infty}.
      end{align*}
      Proof:
      Assume $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. By definition,
      begin{align*}
      |f|_p=left(int_E|f|^pdmright)^{1/p}leq left(int_E|f|_{infty}^pright)^{1/p}=|f|_{infty}cdot m(E)^{1/p}<infty.
      end{align*}

      Letting $pto infty$, we have that $m(E)^{1/p}to 1$. Therefore,
      begin{align*}
      lim_{ptoinfty}|f|_pleq |f|_{infty}.
      end{align*}



      I'm not sure if I am missing anything here or need to justify being able to bring the limit inside and applying to $m(E)$.



      Next, I need to prove that
      begin{align*}
      lim_{ptoinfty}|f|_pgeq |f|_{infty}-epsilon
      end{align*}

      for any $epsilon>0$. Hint: Look at the set
      begin{align*}
      F={xin E:|f|>|f|_{infty}-epsilon}.
      end{align*}



      I'm stuck on this part and would appreciate any help, thanks.










      share|cite|improve this question









      $endgroup$




      Suppose $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. The goal of this problem is to show
      begin{align*}
      lim_{pto infty}|f|_p=|f|_{infty}.
      end{align*}

      First, prove that
      begin{align*}
      lim_{ptoinfty}|f|_pleq |f|_{infty}.
      end{align*}
      Proof:
      Assume $m(E)<infty$ and $finmathcal{L}^{infty}(E)$. By definition,
      begin{align*}
      |f|_p=left(int_E|f|^pdmright)^{1/p}leq left(int_E|f|_{infty}^pright)^{1/p}=|f|_{infty}cdot m(E)^{1/p}<infty.
      end{align*}

      Letting $pto infty$, we have that $m(E)^{1/p}to 1$. Therefore,
      begin{align*}
      lim_{ptoinfty}|f|_pleq |f|_{infty}.
      end{align*}



      I'm not sure if I am missing anything here or need to justify being able to bring the limit inside and applying to $m(E)$.



      Next, I need to prove that
      begin{align*}
      lim_{ptoinfty}|f|_pgeq |f|_{infty}-epsilon
      end{align*}

      for any $epsilon>0$. Hint: Look at the set
      begin{align*}
      F={xin E:|f|>|f|_{infty}-epsilon}.
      end{align*}



      I'm stuck on this part and would appreciate any help, thanks.







      functional-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 4 '18 at 19:18









      TNTTNT

      596




      596






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          You have that



          $||f||_p^p=int_F|f|^p+int_{F^c}|f|^p>int_F|f|^p >$



          $>int_F (||f||_infty -epsilon)^p=(||f||_infty -epsilon)^pm(F) $



          Then



          $||f||_p> (||f||_infty -epsilon)(m(F))^frac{1}{p}$



          So if you fixed $epsilon$ (and $ F=F_{epsilon}$ ) you have that for $pto infty$



          $lim_p||f||_p>||f||_infty -epsilon$



          for every $epsilon>0$ so



          $lim_p ||f||_p>||f||_infty$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026001%2fproperties-of-norm-spaces%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            You have that



            $||f||_p^p=int_F|f|^p+int_{F^c}|f|^p>int_F|f|^p >$



            $>int_F (||f||_infty -epsilon)^p=(||f||_infty -epsilon)^pm(F) $



            Then



            $||f||_p> (||f||_infty -epsilon)(m(F))^frac{1}{p}$



            So if you fixed $epsilon$ (and $ F=F_{epsilon}$ ) you have that for $pto infty$



            $lim_p||f||_p>||f||_infty -epsilon$



            for every $epsilon>0$ so



            $lim_p ||f||_p>||f||_infty$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              You have that



              $||f||_p^p=int_F|f|^p+int_{F^c}|f|^p>int_F|f|^p >$



              $>int_F (||f||_infty -epsilon)^p=(||f||_infty -epsilon)^pm(F) $



              Then



              $||f||_p> (||f||_infty -epsilon)(m(F))^frac{1}{p}$



              So if you fixed $epsilon$ (and $ F=F_{epsilon}$ ) you have that for $pto infty$



              $lim_p||f||_p>||f||_infty -epsilon$



              for every $epsilon>0$ so



              $lim_p ||f||_p>||f||_infty$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                You have that



                $||f||_p^p=int_F|f|^p+int_{F^c}|f|^p>int_F|f|^p >$



                $>int_F (||f||_infty -epsilon)^p=(||f||_infty -epsilon)^pm(F) $



                Then



                $||f||_p> (||f||_infty -epsilon)(m(F))^frac{1}{p}$



                So if you fixed $epsilon$ (and $ F=F_{epsilon}$ ) you have that for $pto infty$



                $lim_p||f||_p>||f||_infty -epsilon$



                for every $epsilon>0$ so



                $lim_p ||f||_p>||f||_infty$






                share|cite|improve this answer











                $endgroup$



                You have that



                $||f||_p^p=int_F|f|^p+int_{F^c}|f|^p>int_F|f|^p >$



                $>int_F (||f||_infty -epsilon)^p=(||f||_infty -epsilon)^pm(F) $



                Then



                $||f||_p> (||f||_infty -epsilon)(m(F))^frac{1}{p}$



                So if you fixed $epsilon$ (and $ F=F_{epsilon}$ ) you have that for $pto infty$



                $lim_p||f||_p>||f||_infty -epsilon$



                for every $epsilon>0$ so



                $lim_p ||f||_p>||f||_infty$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 4 '18 at 19:38

























                answered Dec 4 '18 at 19:27









                Federico FalluccaFederico Fallucca

                2,185210




                2,185210






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3026001%2fproperties-of-norm-spaces%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                    ComboBox Display Member on multiple fields

                    Is it possible to collect Nectar points via Trainline?