Closed form expression for matrix exponential derivative with respect to scalars












5












$begingroup$


I'd like to evaluate generic expressions of the following form:



$$frac{d}{da}expleft[aX + bYright]$$



where $a,b$ are scalars and $X,Y$ are arbitrary complex matrices. Replacing the exponential with its defining series gives us an infinite series of terms which are each symmetrized by the derivative:



$$sum_{n=0}^{infty}frac{1}{n!}frac{d}{da}left(aX+bYright)^{n}$$



For say $n=3$ this gives a term of the form



$$X(aX+bY)^{2}+(aX+bY)X(aX+bY)+(aX+bY)^{2}X$$



I don't see a clean way to resum such a series into a nice analytic form, but I thought maybe there was a clean result for this up to commutators. Any insights or literature suggestions are very welcome.










share|cite|improve this question











$endgroup$

















    5












    $begingroup$


    I'd like to evaluate generic expressions of the following form:



    $$frac{d}{da}expleft[aX + bYright]$$



    where $a,b$ are scalars and $X,Y$ are arbitrary complex matrices. Replacing the exponential with its defining series gives us an infinite series of terms which are each symmetrized by the derivative:



    $$sum_{n=0}^{infty}frac{1}{n!}frac{d}{da}left(aX+bYright)^{n}$$



    For say $n=3$ this gives a term of the form



    $$X(aX+bY)^{2}+(aX+bY)X(aX+bY)+(aX+bY)^{2}X$$



    I don't see a clean way to resum such a series into a nice analytic form, but I thought maybe there was a clean result for this up to commutators. Any insights or literature suggestions are very welcome.










    share|cite|improve this question











    $endgroup$















      5












      5








      5





      $begingroup$


      I'd like to evaluate generic expressions of the following form:



      $$frac{d}{da}expleft[aX + bYright]$$



      where $a,b$ are scalars and $X,Y$ are arbitrary complex matrices. Replacing the exponential with its defining series gives us an infinite series of terms which are each symmetrized by the derivative:



      $$sum_{n=0}^{infty}frac{1}{n!}frac{d}{da}left(aX+bYright)^{n}$$



      For say $n=3$ this gives a term of the form



      $$X(aX+bY)^{2}+(aX+bY)X(aX+bY)+(aX+bY)^{2}X$$



      I don't see a clean way to resum such a series into a nice analytic form, but I thought maybe there was a clean result for this up to commutators. Any insights or literature suggestions are very welcome.










      share|cite|improve this question











      $endgroup$




      I'd like to evaluate generic expressions of the following form:



      $$frac{d}{da}expleft[aX + bYright]$$



      where $a,b$ are scalars and $X,Y$ are arbitrary complex matrices. Replacing the exponential with its defining series gives us an infinite series of terms which are each symmetrized by the derivative:



      $$sum_{n=0}^{infty}frac{1}{n!}frac{d}{da}left(aX+bYright)^{n}$$



      For say $n=3$ this gives a term of the form



      $$X(aX+bY)^{2}+(aX+bY)X(aX+bY)+(aX+bY)^{2}X$$



      I don't see a clean way to resum such a series into a nice analytic form, but I thought maybe there was a clean result for this up to commutators. Any insights or literature suggestions are very welcome.







      linear-algebra matrix-exponential






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 3 at 4:12







      miggle

















      asked Feb 3 at 4:02









      migglemiggle

      404




      404






















          4 Answers
          4






          active

          oldest

          votes


















          3












          $begingroup$

          In general, the derivative of the exponential map is given by
          $$
          frac{d}{dt}e^{Z(t)} = e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}frac{dZ(t)}{dt}
          $$

          Thus, for your case of $Z(a) = aX + bY$, we have
          $$
          begin{align*}
          frac{d}{da}e^{Z} &= e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}(X)
          \ & = e^Z sum_{k=0}^infty frac{(-1)^k}{(k+1)!} mathrm{ad}_Z^k(X)
          end{align*}
          $$

          Where $mathrm{ad}_Z^k(X)$ denotes $[overbrace{Z,[Z,cdots,[Z}^{k text{ times}},X]cdots]]$.





          From the other answer based on Hall's text, we also have
          $$
          left. frac{d}{da} e^Z right|_{a = 0} = e^{bY}left{
          X - frac 1{2!}b[Y,X] + frac 1{3!}b^2[Y,[Y,X]] - cdots
          right}
          $$






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            The number $b$ is really irrelevant to your question.



            For all $X,Yin M_n(mathbb{C})$, we have



            $$
            frac{d}{dt}e^{X+tY}big|_{t=0}=e^Xleft{
            Y-frac{[X,Y]}{2!}+frac{[X,[X,Y]]}{3!}-cdots
            right}.
            $$



            More generally, if $X(t)$ is a smooth matrix-valued function, then
            $$
            frac{d}{dt}e^{X(t)}=e^{X(t)}left{
            frac{I-e^{-operatorname{ad}_{X(t)}}}{operatorname{ad}_{X(t)}}bigg(frac{dX}{dt}bigg)
            right}
            $$



            See Theorem 5.4 (Derivative of Exponential) and its proof in Brian Hall's Lie Groups, Lie Algebras, and Representations.






            share|cite|improve this answer











            $endgroup$





















              1












              $begingroup$

              If $X$ and $Y$ commute, then
              $$
              frac{d}{da}e^{aX+bY}=frac{d}{da}e^{aX}e^{bY}=Xe^{aX+bY}.
              $$






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                Let me add a different way of writing the result.
                If $X(t)$ is an operator-valued function, then
                $$ frac{mathrm d}{mathrm dt} mathrm e^{X(t)} = int_0^1 mathrm e^{(1-lambda) X(t)} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X(t)}; mathrm dlambda . tag{*} $$



                Proof.
                We begin with the identity
                $$ mathrm e^{-Lambda X} frac{mathrm d}{mathrm dt} mathrm e^{Lambda X} = int_0^Lambda mathrm e^{-lambda X} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X}; mathrm dlambda . $$
                These two expressions are equal because they satisfy the same initial value problem as functions of $Lambda$.
                Setting $Lambda = 1$ gives the desired result (*).





                Applied to your example:
                $$ frac{mathrm d}{mathrm da} mathrm e^{aX + bY} = int_0^1 mathrm e^{(1-lambda)(aX+bY)}, X, mathrm e^{lambda(aX+bY)}; mathrm dlambda . $$






                share|cite|improve this answer









                $endgroup$













                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098159%2fclosed-form-expression-for-matrix-exponential-derivative-with-respect-to-scalars%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  3












                  $begingroup$

                  In general, the derivative of the exponential map is given by
                  $$
                  frac{d}{dt}e^{Z(t)} = e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}frac{dZ(t)}{dt}
                  $$

                  Thus, for your case of $Z(a) = aX + bY$, we have
                  $$
                  begin{align*}
                  frac{d}{da}e^{Z} &= e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}(X)
                  \ & = e^Z sum_{k=0}^infty frac{(-1)^k}{(k+1)!} mathrm{ad}_Z^k(X)
                  end{align*}
                  $$

                  Where $mathrm{ad}_Z^k(X)$ denotes $[overbrace{Z,[Z,cdots,[Z}^{k text{ times}},X]cdots]]$.





                  From the other answer based on Hall's text, we also have
                  $$
                  left. frac{d}{da} e^Z right|_{a = 0} = e^{bY}left{
                  X - frac 1{2!}b[Y,X] + frac 1{3!}b^2[Y,[Y,X]] - cdots
                  right}
                  $$






                  share|cite|improve this answer











                  $endgroup$


















                    3












                    $begingroup$

                    In general, the derivative of the exponential map is given by
                    $$
                    frac{d}{dt}e^{Z(t)} = e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}frac{dZ(t)}{dt}
                    $$

                    Thus, for your case of $Z(a) = aX + bY$, we have
                    $$
                    begin{align*}
                    frac{d}{da}e^{Z} &= e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}(X)
                    \ & = e^Z sum_{k=0}^infty frac{(-1)^k}{(k+1)!} mathrm{ad}_Z^k(X)
                    end{align*}
                    $$

                    Where $mathrm{ad}_Z^k(X)$ denotes $[overbrace{Z,[Z,cdots,[Z}^{k text{ times}},X]cdots]]$.





                    From the other answer based on Hall's text, we also have
                    $$
                    left. frac{d}{da} e^Z right|_{a = 0} = e^{bY}left{
                    X - frac 1{2!}b[Y,X] + frac 1{3!}b^2[Y,[Y,X]] - cdots
                    right}
                    $$






                    share|cite|improve this answer











                    $endgroup$
















                      3












                      3








                      3





                      $begingroup$

                      In general, the derivative of the exponential map is given by
                      $$
                      frac{d}{dt}e^{Z(t)} = e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}frac{dZ(t)}{dt}
                      $$

                      Thus, for your case of $Z(a) = aX + bY$, we have
                      $$
                      begin{align*}
                      frac{d}{da}e^{Z} &= e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}(X)
                      \ & = e^Z sum_{k=0}^infty frac{(-1)^k}{(k+1)!} mathrm{ad}_Z^k(X)
                      end{align*}
                      $$

                      Where $mathrm{ad}_Z^k(X)$ denotes $[overbrace{Z,[Z,cdots,[Z}^{k text{ times}},X]cdots]]$.





                      From the other answer based on Hall's text, we also have
                      $$
                      left. frac{d}{da} e^Z right|_{a = 0} = e^{bY}left{
                      X - frac 1{2!}b[Y,X] + frac 1{3!}b^2[Y,[Y,X]] - cdots
                      right}
                      $$






                      share|cite|improve this answer











                      $endgroup$



                      In general, the derivative of the exponential map is given by
                      $$
                      frac{d}{dt}e^{Z(t)} = e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}frac{dZ(t)}{dt}
                      $$

                      Thus, for your case of $Z(a) = aX + bY$, we have
                      $$
                      begin{align*}
                      frac{d}{da}e^{Z} &= e^{Z}frac{1 - e^{-mathrm{ad}_{Z}}}{mathrm{ad}_{Z}}(X)
                      \ & = e^Z sum_{k=0}^infty frac{(-1)^k}{(k+1)!} mathrm{ad}_Z^k(X)
                      end{align*}
                      $$

                      Where $mathrm{ad}_Z^k(X)$ denotes $[overbrace{Z,[Z,cdots,[Z}^{k text{ times}},X]cdots]]$.





                      From the other answer based on Hall's text, we also have
                      $$
                      left. frac{d}{da} e^Z right|_{a = 0} = e^{bY}left{
                      X - frac 1{2!}b[Y,X] + frac 1{3!}b^2[Y,[Y,X]] - cdots
                      right}
                      $$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Feb 3 at 4:43

























                      answered Feb 3 at 4:33









                      OmnomnomnomOmnomnomnom

                      128k791183




                      128k791183























                          2












                          $begingroup$

                          The number $b$ is really irrelevant to your question.



                          For all $X,Yin M_n(mathbb{C})$, we have



                          $$
                          frac{d}{dt}e^{X+tY}big|_{t=0}=e^Xleft{
                          Y-frac{[X,Y]}{2!}+frac{[X,[X,Y]]}{3!}-cdots
                          right}.
                          $$



                          More generally, if $X(t)$ is a smooth matrix-valued function, then
                          $$
                          frac{d}{dt}e^{X(t)}=e^{X(t)}left{
                          frac{I-e^{-operatorname{ad}_{X(t)}}}{operatorname{ad}_{X(t)}}bigg(frac{dX}{dt}bigg)
                          right}
                          $$



                          See Theorem 5.4 (Derivative of Exponential) and its proof in Brian Hall's Lie Groups, Lie Algebras, and Representations.






                          share|cite|improve this answer











                          $endgroup$


















                            2












                            $begingroup$

                            The number $b$ is really irrelevant to your question.



                            For all $X,Yin M_n(mathbb{C})$, we have



                            $$
                            frac{d}{dt}e^{X+tY}big|_{t=0}=e^Xleft{
                            Y-frac{[X,Y]}{2!}+frac{[X,[X,Y]]}{3!}-cdots
                            right}.
                            $$



                            More generally, if $X(t)$ is a smooth matrix-valued function, then
                            $$
                            frac{d}{dt}e^{X(t)}=e^{X(t)}left{
                            frac{I-e^{-operatorname{ad}_{X(t)}}}{operatorname{ad}_{X(t)}}bigg(frac{dX}{dt}bigg)
                            right}
                            $$



                            See Theorem 5.4 (Derivative of Exponential) and its proof in Brian Hall's Lie Groups, Lie Algebras, and Representations.






                            share|cite|improve this answer











                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              The number $b$ is really irrelevant to your question.



                              For all $X,Yin M_n(mathbb{C})$, we have



                              $$
                              frac{d}{dt}e^{X+tY}big|_{t=0}=e^Xleft{
                              Y-frac{[X,Y]}{2!}+frac{[X,[X,Y]]}{3!}-cdots
                              right}.
                              $$



                              More generally, if $X(t)$ is a smooth matrix-valued function, then
                              $$
                              frac{d}{dt}e^{X(t)}=e^{X(t)}left{
                              frac{I-e^{-operatorname{ad}_{X(t)}}}{operatorname{ad}_{X(t)}}bigg(frac{dX}{dt}bigg)
                              right}
                              $$



                              See Theorem 5.4 (Derivative of Exponential) and its proof in Brian Hall's Lie Groups, Lie Algebras, and Representations.






                              share|cite|improve this answer











                              $endgroup$



                              The number $b$ is really irrelevant to your question.



                              For all $X,Yin M_n(mathbb{C})$, we have



                              $$
                              frac{d}{dt}e^{X+tY}big|_{t=0}=e^Xleft{
                              Y-frac{[X,Y]}{2!}+frac{[X,[X,Y]]}{3!}-cdots
                              right}.
                              $$



                              More generally, if $X(t)$ is a smooth matrix-valued function, then
                              $$
                              frac{d}{dt}e^{X(t)}=e^{X(t)}left{
                              frac{I-e^{-operatorname{ad}_{X(t)}}}{operatorname{ad}_{X(t)}}bigg(frac{dX}{dt}bigg)
                              right}
                              $$



                              See Theorem 5.4 (Derivative of Exponential) and its proof in Brian Hall's Lie Groups, Lie Algebras, and Representations.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Feb 3 at 4:38

























                              answered Feb 3 at 4:32









                              user587192user587192

                              2,064415




                              2,064415























                                  1












                                  $begingroup$

                                  If $X$ and $Y$ commute, then
                                  $$
                                  frac{d}{da}e^{aX+bY}=frac{d}{da}e^{aX}e^{bY}=Xe^{aX+bY}.
                                  $$






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    If $X$ and $Y$ commute, then
                                    $$
                                    frac{d}{da}e^{aX+bY}=frac{d}{da}e^{aX}e^{bY}=Xe^{aX+bY}.
                                    $$






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      If $X$ and $Y$ commute, then
                                      $$
                                      frac{d}{da}e^{aX+bY}=frac{d}{da}e^{aX}e^{bY}=Xe^{aX+bY}.
                                      $$






                                      share|cite|improve this answer









                                      $endgroup$



                                      If $X$ and $Y$ commute, then
                                      $$
                                      frac{d}{da}e^{aX+bY}=frac{d}{da}e^{aX}e^{bY}=Xe^{aX+bY}.
                                      $$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Feb 3 at 4:25









                                      d.k.o.d.k.o.

                                      9,340628




                                      9,340628























                                          0












                                          $begingroup$

                                          Let me add a different way of writing the result.
                                          If $X(t)$ is an operator-valued function, then
                                          $$ frac{mathrm d}{mathrm dt} mathrm e^{X(t)} = int_0^1 mathrm e^{(1-lambda) X(t)} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X(t)}; mathrm dlambda . tag{*} $$



                                          Proof.
                                          We begin with the identity
                                          $$ mathrm e^{-Lambda X} frac{mathrm d}{mathrm dt} mathrm e^{Lambda X} = int_0^Lambda mathrm e^{-lambda X} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X}; mathrm dlambda . $$
                                          These two expressions are equal because they satisfy the same initial value problem as functions of $Lambda$.
                                          Setting $Lambda = 1$ gives the desired result (*).





                                          Applied to your example:
                                          $$ frac{mathrm d}{mathrm da} mathrm e^{aX + bY} = int_0^1 mathrm e^{(1-lambda)(aX+bY)}, X, mathrm e^{lambda(aX+bY)}; mathrm dlambda . $$






                                          share|cite|improve this answer









                                          $endgroup$


















                                            0












                                            $begingroup$

                                            Let me add a different way of writing the result.
                                            If $X(t)$ is an operator-valued function, then
                                            $$ frac{mathrm d}{mathrm dt} mathrm e^{X(t)} = int_0^1 mathrm e^{(1-lambda) X(t)} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X(t)}; mathrm dlambda . tag{*} $$



                                            Proof.
                                            We begin with the identity
                                            $$ mathrm e^{-Lambda X} frac{mathrm d}{mathrm dt} mathrm e^{Lambda X} = int_0^Lambda mathrm e^{-lambda X} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X}; mathrm dlambda . $$
                                            These two expressions are equal because they satisfy the same initial value problem as functions of $Lambda$.
                                            Setting $Lambda = 1$ gives the desired result (*).





                                            Applied to your example:
                                            $$ frac{mathrm d}{mathrm da} mathrm e^{aX + bY} = int_0^1 mathrm e^{(1-lambda)(aX+bY)}, X, mathrm e^{lambda(aX+bY)}; mathrm dlambda . $$






                                            share|cite|improve this answer









                                            $endgroup$
















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Let me add a different way of writing the result.
                                              If $X(t)$ is an operator-valued function, then
                                              $$ frac{mathrm d}{mathrm dt} mathrm e^{X(t)} = int_0^1 mathrm e^{(1-lambda) X(t)} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X(t)}; mathrm dlambda . tag{*} $$



                                              Proof.
                                              We begin with the identity
                                              $$ mathrm e^{-Lambda X} frac{mathrm d}{mathrm dt} mathrm e^{Lambda X} = int_0^Lambda mathrm e^{-lambda X} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X}; mathrm dlambda . $$
                                              These two expressions are equal because they satisfy the same initial value problem as functions of $Lambda$.
                                              Setting $Lambda = 1$ gives the desired result (*).





                                              Applied to your example:
                                              $$ frac{mathrm d}{mathrm da} mathrm e^{aX + bY} = int_0^1 mathrm e^{(1-lambda)(aX+bY)}, X, mathrm e^{lambda(aX+bY)}; mathrm dlambda . $$






                                              share|cite|improve this answer









                                              $endgroup$



                                              Let me add a different way of writing the result.
                                              If $X(t)$ is an operator-valued function, then
                                              $$ frac{mathrm d}{mathrm dt} mathrm e^{X(t)} = int_0^1 mathrm e^{(1-lambda) X(t)} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X(t)}; mathrm dlambda . tag{*} $$



                                              Proof.
                                              We begin with the identity
                                              $$ mathrm e^{-Lambda X} frac{mathrm d}{mathrm dt} mathrm e^{Lambda X} = int_0^Lambda mathrm e^{-lambda X} frac{mathrm dX}{mathrm dt} mathrm e^{lambda X}; mathrm dlambda . $$
                                              These two expressions are equal because they satisfy the same initial value problem as functions of $Lambda$.
                                              Setting $Lambda = 1$ gives the desired result (*).





                                              Applied to your example:
                                              $$ frac{mathrm d}{mathrm da} mathrm e^{aX + bY} = int_0^1 mathrm e^{(1-lambda)(aX+bY)}, X, mathrm e^{lambda(aX+bY)}; mathrm dlambda . $$







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Feb 3 at 10:41









                                              NoiralefNoiralef

                                              347112




                                              347112






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098159%2fclosed-form-expression-for-matrix-exponential-derivative-with-respect-to-scalars%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                                                  ComboBox Display Member on multiple fields

                                                  Is it possible to collect Nectar points via Trainline?