Proof verification of $lim_{x to x_0} ( f(x) g(x) ) = km $ if $lim_{x to x_0}f(x) = k $ and $ lim_{x to x_0}...












2














Suppose $f: A subset mathbb{R} to mathbb{R} $ and $g: A subset mathbb{R} to mathbb{R} $ such that $f(x) to k$ and $g(x) to m$.
Let $epsilon > 0$ for some $epsilon in mathbb{R} $. Since $f(x) to k$ and $g(x) to m$, there are $delta_f$ and $delta_g$ such that $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$ and $$0 < |x - x_0| <delta_f Rightarrow |g(x) - m| < epsilon $$. Let $delta = min{delta_f, delta_g} $. Then we have: $$ 0 < |x - x_0| <delta Rightarrow |f(x) - k||g(x) - m| < epsilon^2 $$.
Observe now that, for any fixed $epsilon$, both $f$ and $g$ are limited in this $epsilon$-neighborhood of $x_0$. Therefore there are $L_f$ and $L_g$ (which depend on $epsilon$ too) such that $forall x (|f(x)| < L_f) land forall x (|g(x) < L_g)$, with $x in B_delta (x)backslash {x_0} subset A$.



We now expand the product $|f(x) - k||g(x) - m|$ (I will denote $f(x)$ by $f$, the same for $g(x)$, for the sake of my tired fingers):
$$(1): ; |fg -kg -mf +km|;$$ Let $ C = (L_g k + L_f m)$. Then:
$$(2): ; |fg - C/2 - C/2 +km| < epsilon + |C| $$
$$(3): ; |fg - C/2 - (C/2 -km)| < :...$$
Since $|a - b| ≥ |a|-|b|$,
$$(4): ; |fg - C/2| - |C/2 -km| <: ...$$
$$(5): ; |fg| - |C/2| - (|C/2| - |km|) <:...$$
$$(6): ; |fg|+|km| < epsilon + 2|C|$$
Since $|x| = |-x|$,
$$(7): ; |fg| + |-km| < epsilon + 2|C|$$
Since $|x + y| ≤ |x| + |y|$,
$$(8): ; |fg - km| < epsilon + 2|C|$$
Since each step respect the fact that the left side of the inequality is always decreasing, we conclude by $(8)$ that $fg to km$.










share|cite|improve this question
























  • What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
    – mfl
    Nov 22 '18 at 17:54










  • sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
    – izzorts
    Nov 22 '18 at 17:58
















2














Suppose $f: A subset mathbb{R} to mathbb{R} $ and $g: A subset mathbb{R} to mathbb{R} $ such that $f(x) to k$ and $g(x) to m$.
Let $epsilon > 0$ for some $epsilon in mathbb{R} $. Since $f(x) to k$ and $g(x) to m$, there are $delta_f$ and $delta_g$ such that $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$ and $$0 < |x - x_0| <delta_f Rightarrow |g(x) - m| < epsilon $$. Let $delta = min{delta_f, delta_g} $. Then we have: $$ 0 < |x - x_0| <delta Rightarrow |f(x) - k||g(x) - m| < epsilon^2 $$.
Observe now that, for any fixed $epsilon$, both $f$ and $g$ are limited in this $epsilon$-neighborhood of $x_0$. Therefore there are $L_f$ and $L_g$ (which depend on $epsilon$ too) such that $forall x (|f(x)| < L_f) land forall x (|g(x) < L_g)$, with $x in B_delta (x)backslash {x_0} subset A$.



We now expand the product $|f(x) - k||g(x) - m|$ (I will denote $f(x)$ by $f$, the same for $g(x)$, for the sake of my tired fingers):
$$(1): ; |fg -kg -mf +km|;$$ Let $ C = (L_g k + L_f m)$. Then:
$$(2): ; |fg - C/2 - C/2 +km| < epsilon + |C| $$
$$(3): ; |fg - C/2 - (C/2 -km)| < :...$$
Since $|a - b| ≥ |a|-|b|$,
$$(4): ; |fg - C/2| - |C/2 -km| <: ...$$
$$(5): ; |fg| - |C/2| - (|C/2| - |km|) <:...$$
$$(6): ; |fg|+|km| < epsilon + 2|C|$$
Since $|x| = |-x|$,
$$(7): ; |fg| + |-km| < epsilon + 2|C|$$
Since $|x + y| ≤ |x| + |y|$,
$$(8): ; |fg - km| < epsilon + 2|C|$$
Since each step respect the fact that the left side of the inequality is always decreasing, we conclude by $(8)$ that $fg to km$.










share|cite|improve this question
























  • What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
    – mfl
    Nov 22 '18 at 17:54










  • sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
    – izzorts
    Nov 22 '18 at 17:58














2












2








2







Suppose $f: A subset mathbb{R} to mathbb{R} $ and $g: A subset mathbb{R} to mathbb{R} $ such that $f(x) to k$ and $g(x) to m$.
Let $epsilon > 0$ for some $epsilon in mathbb{R} $. Since $f(x) to k$ and $g(x) to m$, there are $delta_f$ and $delta_g$ such that $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$ and $$0 < |x - x_0| <delta_f Rightarrow |g(x) - m| < epsilon $$. Let $delta = min{delta_f, delta_g} $. Then we have: $$ 0 < |x - x_0| <delta Rightarrow |f(x) - k||g(x) - m| < epsilon^2 $$.
Observe now that, for any fixed $epsilon$, both $f$ and $g$ are limited in this $epsilon$-neighborhood of $x_0$. Therefore there are $L_f$ and $L_g$ (which depend on $epsilon$ too) such that $forall x (|f(x)| < L_f) land forall x (|g(x) < L_g)$, with $x in B_delta (x)backslash {x_0} subset A$.



We now expand the product $|f(x) - k||g(x) - m|$ (I will denote $f(x)$ by $f$, the same for $g(x)$, for the sake of my tired fingers):
$$(1): ; |fg -kg -mf +km|;$$ Let $ C = (L_g k + L_f m)$. Then:
$$(2): ; |fg - C/2 - C/2 +km| < epsilon + |C| $$
$$(3): ; |fg - C/2 - (C/2 -km)| < :...$$
Since $|a - b| ≥ |a|-|b|$,
$$(4): ; |fg - C/2| - |C/2 -km| <: ...$$
$$(5): ; |fg| - |C/2| - (|C/2| - |km|) <:...$$
$$(6): ; |fg|+|km| < epsilon + 2|C|$$
Since $|x| = |-x|$,
$$(7): ; |fg| + |-km| < epsilon + 2|C|$$
Since $|x + y| ≤ |x| + |y|$,
$$(8): ; |fg - km| < epsilon + 2|C|$$
Since each step respect the fact that the left side of the inequality is always decreasing, we conclude by $(8)$ that $fg to km$.










share|cite|improve this question















Suppose $f: A subset mathbb{R} to mathbb{R} $ and $g: A subset mathbb{R} to mathbb{R} $ such that $f(x) to k$ and $g(x) to m$.
Let $epsilon > 0$ for some $epsilon in mathbb{R} $. Since $f(x) to k$ and $g(x) to m$, there are $delta_f$ and $delta_g$ such that $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$ and $$0 < |x - x_0| <delta_f Rightarrow |g(x) - m| < epsilon $$. Let $delta = min{delta_f, delta_g} $. Then we have: $$ 0 < |x - x_0| <delta Rightarrow |f(x) - k||g(x) - m| < epsilon^2 $$.
Observe now that, for any fixed $epsilon$, both $f$ and $g$ are limited in this $epsilon$-neighborhood of $x_0$. Therefore there are $L_f$ and $L_g$ (which depend on $epsilon$ too) such that $forall x (|f(x)| < L_f) land forall x (|g(x) < L_g)$, with $x in B_delta (x)backslash {x_0} subset A$.



We now expand the product $|f(x) - k||g(x) - m|$ (I will denote $f(x)$ by $f$, the same for $g(x)$, for the sake of my tired fingers):
$$(1): ; |fg -kg -mf +km|;$$ Let $ C = (L_g k + L_f m)$. Then:
$$(2): ; |fg - C/2 - C/2 +km| < epsilon + |C| $$
$$(3): ; |fg - C/2 - (C/2 -km)| < :...$$
Since $|a - b| ≥ |a|-|b|$,
$$(4): ; |fg - C/2| - |C/2 -km| <: ...$$
$$(5): ; |fg| - |C/2| - (|C/2| - |km|) <:...$$
$$(6): ; |fg|+|km| < epsilon + 2|C|$$
Since $|x| = |-x|$,
$$(7): ; |fg| + |-km| < epsilon + 2|C|$$
Since $|x + y| ≤ |x| + |y|$,
$$(8): ; |fg - km| < epsilon + 2|C|$$
Since each step respect the fact that the left side of the inequality is always decreasing, we conclude by $(8)$ that $fg to km$.







real-analysis limits proof-verification






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 22 '18 at 17:57







izzorts

















asked Nov 22 '18 at 17:48









izzortsizzorts

13618




13618












  • What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
    – mfl
    Nov 22 '18 at 17:54










  • sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
    – izzorts
    Nov 22 '18 at 17:58


















  • What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
    – mfl
    Nov 22 '18 at 17:54










  • sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
    – izzorts
    Nov 22 '18 at 17:58
















What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
– mfl
Nov 22 '18 at 17:54




What are $L_f,L_g?$ Also note that $|fg - km| < epsilon + 2|C|$ doesn't imply that $fgto km$ because of the presence of $C.$
– mfl
Nov 22 '18 at 17:54












sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
– izzorts
Nov 22 '18 at 17:58




sorry, edited. $L_f$ and $L_g$ are bounds for $f$ and $g$ in some $epsilon$-neighborhood, for a fixed $epsilon$
– izzorts
Nov 22 '18 at 17:58










2 Answers
2






active

oldest

votes


















1














Assume wlog $k,m> 0$, then we have that




  • $|f(x)-k|<epsilon_1 iff 0<k-epsilon_1 le f(x) le k+epsilon_1$

  • $|g(x)-m|<epsilon_2iff 0<m-epsilon_2 le g(x) le m+epsilon_2$


then



$$ (k-epsilon_1)(m-epsilon_2) le f(x)g(x) le (k+epsilon_1)(m+epsilon_2)$$



$$ km-kepsilon_2-mepsilon_1+epsilon_1epsilon_2 le f(x)g(x) le km+kepsilon_2+mepsilon_1+epsilon_1epsilon_2 $$



that is



$$|f(x)g(x)-km|le epsilon_3$$



with $epsilon_3=|kepsilon_2+mepsilon_1-epsilon_1epsilon_2|$.






share|cite|improve this answer































    1














    For any $epsilon>0$ there exist $delta_f,delta_g>0$ such that



    $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$



    $$0 < |x - x_0| <delta_g Rightarrow |g(x) - m| < epsilon$$



    So, if we consider $delta=min{delta_f,delta_g}$ we have



    $$0 < |x - x_0| <delta Rightarrow |f(x) - k| < epsilon $$



    $$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilon$$



    Now



    begin{align}|f(x)g(x)-km| &=|f(x)g(x)-kg(x)+kg(x)-km|\ &le |f(x)g(x)-kg(x)|+|kg(x)-km|.end{align} Thus if $0 < |x - x_0| <delta$ then
    $$|f(x)g(x)-km|le |g(x)||f(x)-k|+|k||g(x)-m|<epsilon(|k|+|g(x)|). $$



    Since



    $$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilonimplies |g(x)|<|m|+epsilon$$ we have



    $$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+epsilon). $$ If we consider $epsilon<1$ it is



    $$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+1)$$ and we are done.






    share|cite|improve this answer























      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009412%2fproof-verification-of-lim-x-to-x-0-fx-gx-km-if-lim-x-to-x-0%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1














      Assume wlog $k,m> 0$, then we have that




      • $|f(x)-k|<epsilon_1 iff 0<k-epsilon_1 le f(x) le k+epsilon_1$

      • $|g(x)-m|<epsilon_2iff 0<m-epsilon_2 le g(x) le m+epsilon_2$


      then



      $$ (k-epsilon_1)(m-epsilon_2) le f(x)g(x) le (k+epsilon_1)(m+epsilon_2)$$



      $$ km-kepsilon_2-mepsilon_1+epsilon_1epsilon_2 le f(x)g(x) le km+kepsilon_2+mepsilon_1+epsilon_1epsilon_2 $$



      that is



      $$|f(x)g(x)-km|le epsilon_3$$



      with $epsilon_3=|kepsilon_2+mepsilon_1-epsilon_1epsilon_2|$.






      share|cite|improve this answer




























        1














        Assume wlog $k,m> 0$, then we have that




        • $|f(x)-k|<epsilon_1 iff 0<k-epsilon_1 le f(x) le k+epsilon_1$

        • $|g(x)-m|<epsilon_2iff 0<m-epsilon_2 le g(x) le m+epsilon_2$


        then



        $$ (k-epsilon_1)(m-epsilon_2) le f(x)g(x) le (k+epsilon_1)(m+epsilon_2)$$



        $$ km-kepsilon_2-mepsilon_1+epsilon_1epsilon_2 le f(x)g(x) le km+kepsilon_2+mepsilon_1+epsilon_1epsilon_2 $$



        that is



        $$|f(x)g(x)-km|le epsilon_3$$



        with $epsilon_3=|kepsilon_2+mepsilon_1-epsilon_1epsilon_2|$.






        share|cite|improve this answer


























          1












          1








          1






          Assume wlog $k,m> 0$, then we have that




          • $|f(x)-k|<epsilon_1 iff 0<k-epsilon_1 le f(x) le k+epsilon_1$

          • $|g(x)-m|<epsilon_2iff 0<m-epsilon_2 le g(x) le m+epsilon_2$


          then



          $$ (k-epsilon_1)(m-epsilon_2) le f(x)g(x) le (k+epsilon_1)(m+epsilon_2)$$



          $$ km-kepsilon_2-mepsilon_1+epsilon_1epsilon_2 le f(x)g(x) le km+kepsilon_2+mepsilon_1+epsilon_1epsilon_2 $$



          that is



          $$|f(x)g(x)-km|le epsilon_3$$



          with $epsilon_3=|kepsilon_2+mepsilon_1-epsilon_1epsilon_2|$.






          share|cite|improve this answer














          Assume wlog $k,m> 0$, then we have that




          • $|f(x)-k|<epsilon_1 iff 0<k-epsilon_1 le f(x) le k+epsilon_1$

          • $|g(x)-m|<epsilon_2iff 0<m-epsilon_2 le g(x) le m+epsilon_2$


          then



          $$ (k-epsilon_1)(m-epsilon_2) le f(x)g(x) le (k+epsilon_1)(m+epsilon_2)$$



          $$ km-kepsilon_2-mepsilon_1+epsilon_1epsilon_2 le f(x)g(x) le km+kepsilon_2+mepsilon_1+epsilon_1epsilon_2 $$



          that is



          $$|f(x)g(x)-km|le epsilon_3$$



          with $epsilon_3=|kepsilon_2+mepsilon_1-epsilon_1epsilon_2|$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 22 '18 at 18:06

























          answered Nov 22 '18 at 18:01









          gimusigimusi

          1




          1























              1














              For any $epsilon>0$ there exist $delta_f,delta_g>0$ such that



              $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$



              $$0 < |x - x_0| <delta_g Rightarrow |g(x) - m| < epsilon$$



              So, if we consider $delta=min{delta_f,delta_g}$ we have



              $$0 < |x - x_0| <delta Rightarrow |f(x) - k| < epsilon $$



              $$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilon$$



              Now



              begin{align}|f(x)g(x)-km| &=|f(x)g(x)-kg(x)+kg(x)-km|\ &le |f(x)g(x)-kg(x)|+|kg(x)-km|.end{align} Thus if $0 < |x - x_0| <delta$ then
              $$|f(x)g(x)-km|le |g(x)||f(x)-k|+|k||g(x)-m|<epsilon(|k|+|g(x)|). $$



              Since



              $$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilonimplies |g(x)|<|m|+epsilon$$ we have



              $$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+epsilon). $$ If we consider $epsilon<1$ it is



              $$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+1)$$ and we are done.






              share|cite|improve this answer




























                1














                For any $epsilon>0$ there exist $delta_f,delta_g>0$ such that



                $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$



                $$0 < |x - x_0| <delta_g Rightarrow |g(x) - m| < epsilon$$



                So, if we consider $delta=min{delta_f,delta_g}$ we have



                $$0 < |x - x_0| <delta Rightarrow |f(x) - k| < epsilon $$



                $$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilon$$



                Now



                begin{align}|f(x)g(x)-km| &=|f(x)g(x)-kg(x)+kg(x)-km|\ &le |f(x)g(x)-kg(x)|+|kg(x)-km|.end{align} Thus if $0 < |x - x_0| <delta$ then
                $$|f(x)g(x)-km|le |g(x)||f(x)-k|+|k||g(x)-m|<epsilon(|k|+|g(x)|). $$



                Since



                $$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilonimplies |g(x)|<|m|+epsilon$$ we have



                $$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+epsilon). $$ If we consider $epsilon<1$ it is



                $$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+1)$$ and we are done.






                share|cite|improve this answer


























                  1












                  1








                  1






                  For any $epsilon>0$ there exist $delta_f,delta_g>0$ such that



                  $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$



                  $$0 < |x - x_0| <delta_g Rightarrow |g(x) - m| < epsilon$$



                  So, if we consider $delta=min{delta_f,delta_g}$ we have



                  $$0 < |x - x_0| <delta Rightarrow |f(x) - k| < epsilon $$



                  $$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilon$$



                  Now



                  begin{align}|f(x)g(x)-km| &=|f(x)g(x)-kg(x)+kg(x)-km|\ &le |f(x)g(x)-kg(x)|+|kg(x)-km|.end{align} Thus if $0 < |x - x_0| <delta$ then
                  $$|f(x)g(x)-km|le |g(x)||f(x)-k|+|k||g(x)-m|<epsilon(|k|+|g(x)|). $$



                  Since



                  $$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilonimplies |g(x)|<|m|+epsilon$$ we have



                  $$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+epsilon). $$ If we consider $epsilon<1$ it is



                  $$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+1)$$ and we are done.






                  share|cite|improve this answer














                  For any $epsilon>0$ there exist $delta_f,delta_g>0$ such that



                  $$0 < |x - x_0| <delta_f Rightarrow |f(x) - k| < epsilon $$



                  $$0 < |x - x_0| <delta_g Rightarrow |g(x) - m| < epsilon$$



                  So, if we consider $delta=min{delta_f,delta_g}$ we have



                  $$0 < |x - x_0| <delta Rightarrow |f(x) - k| < epsilon $$



                  $$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilon$$



                  Now



                  begin{align}|f(x)g(x)-km| &=|f(x)g(x)-kg(x)+kg(x)-km|\ &le |f(x)g(x)-kg(x)|+|kg(x)-km|.end{align} Thus if $0 < |x - x_0| <delta$ then
                  $$|f(x)g(x)-km|le |g(x)||f(x)-k|+|k||g(x)-m|<epsilon(|k|+|g(x)|). $$



                  Since



                  $$0 < |x - x_0| <delta Rightarrow |g(x) - m| < epsilonimplies |g(x)|<|m|+epsilon$$ we have



                  $$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+epsilon). $$ If we consider $epsilon<1$ it is



                  $$0 < |x - x_0| <delta implies |f(x)g(x)-km|<epsilon (|k|+|m|+1)$$ and we are done.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 23 '18 at 17:50

























                  answered Nov 22 '18 at 18:02









                  mflmfl

                  26k12141




                  26k12141






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009412%2fproof-verification-of-lim-x-to-x-0-fx-gx-km-if-lim-x-to-x-0%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                      ComboBox Display Member on multiple fields

                      Is it possible to collect Nectar points via Trainline?