Uniform convergence of iterated improper integrals on $(0,infty)$












1












$begingroup$


I'm trying to get a better understanding of when it is permissible to swtich conditionally convergent improper integrals (when Fubini inapplicable) and I looked at a case where it works:
$$int_0^infty int_0^infty e^{-xy} sin x , dx, dy = int_0^infty int_0^infty e^{-xy} sin x , dy , dx $$



I know the inner iterated integrals are uniformly convergent by the Weierstrass test for $x , y in [c, infty)$ where $c > 0$. Since $|e^{-xy} sin x | leqslant e^{-cy}$ for $c leq x < infty$ , then $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $c leq x < infty$. Since $|e^{-xy} sin x | leqslant e^{-cx}$ for $c leq y < infty$ , then $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $c leq y < infty$.



The Weierstrass test is not helpful to consider uniform convergence on $(0,infty)$.



My question is how to determine if $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $0 < x < infty$ and $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $0 < y < infty$ and either prove it or disprove it.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I'm trying to get a better understanding of when it is permissible to swtich conditionally convergent improper integrals (when Fubini inapplicable) and I looked at a case where it works:
    $$int_0^infty int_0^infty e^{-xy} sin x , dx, dy = int_0^infty int_0^infty e^{-xy} sin x , dy , dx $$



    I know the inner iterated integrals are uniformly convergent by the Weierstrass test for $x , y in [c, infty)$ where $c > 0$. Since $|e^{-xy} sin x | leqslant e^{-cy}$ for $c leq x < infty$ , then $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $c leq x < infty$. Since $|e^{-xy} sin x | leqslant e^{-cx}$ for $c leq y < infty$ , then $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $c leq y < infty$.



    The Weierstrass test is not helpful to consider uniform convergence on $(0,infty)$.



    My question is how to determine if $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $0 < x < infty$ and $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $0 < y < infty$ and either prove it or disprove it.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      I'm trying to get a better understanding of when it is permissible to swtich conditionally convergent improper integrals (when Fubini inapplicable) and I looked at a case where it works:
      $$int_0^infty int_0^infty e^{-xy} sin x , dx, dy = int_0^infty int_0^infty e^{-xy} sin x , dy , dx $$



      I know the inner iterated integrals are uniformly convergent by the Weierstrass test for $x , y in [c, infty)$ where $c > 0$. Since $|e^{-xy} sin x | leqslant e^{-cy}$ for $c leq x < infty$ , then $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $c leq x < infty$. Since $|e^{-xy} sin x | leqslant e^{-cx}$ for $c leq y < infty$ , then $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $c leq y < infty$.



      The Weierstrass test is not helpful to consider uniform convergence on $(0,infty)$.



      My question is how to determine if $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $0 < x < infty$ and $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $0 < y < infty$ and either prove it or disprove it.










      share|cite|improve this question











      $endgroup$




      I'm trying to get a better understanding of when it is permissible to swtich conditionally convergent improper integrals (when Fubini inapplicable) and I looked at a case where it works:
      $$int_0^infty int_0^infty e^{-xy} sin x , dx, dy = int_0^infty int_0^infty e^{-xy} sin x , dy , dx $$



      I know the inner iterated integrals are uniformly convergent by the Weierstrass test for $x , y in [c, infty)$ where $c > 0$. Since $|e^{-xy} sin x | leqslant e^{-cy}$ for $c leq x < infty$ , then $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $c leq x < infty$. Since $|e^{-xy} sin x | leqslant e^{-cx}$ for $c leq y < infty$ , then $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $c leq y < infty$.



      The Weierstrass test is not helpful to consider uniform convergence on $(0,infty)$.



      My question is how to determine if $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $0 < x < infty$ and $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $0 < y < infty$ and either prove it or disprove it.







      real-analysis calculus improper-integrals uniform-convergence






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 13 '18 at 19:02









      RRL

      53.4k52574




      53.4k52574










      asked Dec 12 '18 at 22:44









      WoodWorkerWoodWorker

      470314




      470314






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Neither integral is uniformly convergent for values of the parameter in the open interval $(0,infty)$.



          For the first integral, with $y_n = (2npi + pi)^{-1} in (0,infty)$ we have



          $$left|int_{2npi}^{2npi+pi} e^{-xy_n} sin x , dxright|geqslant e^{-(2npi+pi) y_n}int_{2npi}^{2npi+pi} sin x , dx = 2 e^{-(2npi+pi)y_n}= 2e^{-1}$$



          Since the RHS does not converge to $0$ as $n to infty$, the Cauchy criterion for uniform convergence is violated.



          For the second integral, with $x_n = 1/n in (0,infty)$ we have



          $$left|int_n^infty e^{-x_ny} sin x_n , dyright| = left|frac{sin x_n}{x_n} right|e^{-nx_n} = frac{sin frac{1}{n}}{frac{1}{n}}e^{-1} ,,, xrightarrow[n to infty]{} ,,e^{-1},$$



          and, again, violation of the Cauchy criterion precludes uniform convergence.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
            $endgroup$
            – WoodWorker
            Dec 13 '18 at 0:07












          • $begingroup$
            Also can you take a look at this: math.stackexchange.com/q/3020423/318852
            $endgroup$
            – WoodWorker
            Dec 13 '18 at 0:10






          • 1




            $begingroup$
            @WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
            $endgroup$
            – RRL
            Dec 13 '18 at 5:51






          • 1




            $begingroup$
            Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
            $endgroup$
            – RRL
            Dec 13 '18 at 5:54














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037333%2funiform-convergence-of-iterated-improper-integrals-on-0-infty%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Neither integral is uniformly convergent for values of the parameter in the open interval $(0,infty)$.



          For the first integral, with $y_n = (2npi + pi)^{-1} in (0,infty)$ we have



          $$left|int_{2npi}^{2npi+pi} e^{-xy_n} sin x , dxright|geqslant e^{-(2npi+pi) y_n}int_{2npi}^{2npi+pi} sin x , dx = 2 e^{-(2npi+pi)y_n}= 2e^{-1}$$



          Since the RHS does not converge to $0$ as $n to infty$, the Cauchy criterion for uniform convergence is violated.



          For the second integral, with $x_n = 1/n in (0,infty)$ we have



          $$left|int_n^infty e^{-x_ny} sin x_n , dyright| = left|frac{sin x_n}{x_n} right|e^{-nx_n} = frac{sin frac{1}{n}}{frac{1}{n}}e^{-1} ,,, xrightarrow[n to infty]{} ,,e^{-1},$$



          and, again, violation of the Cauchy criterion precludes uniform convergence.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
            $endgroup$
            – WoodWorker
            Dec 13 '18 at 0:07












          • $begingroup$
            Also can you take a look at this: math.stackexchange.com/q/3020423/318852
            $endgroup$
            – WoodWorker
            Dec 13 '18 at 0:10






          • 1




            $begingroup$
            @WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
            $endgroup$
            – RRL
            Dec 13 '18 at 5:51






          • 1




            $begingroup$
            Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
            $endgroup$
            – RRL
            Dec 13 '18 at 5:54


















          1












          $begingroup$

          Neither integral is uniformly convergent for values of the parameter in the open interval $(0,infty)$.



          For the first integral, with $y_n = (2npi + pi)^{-1} in (0,infty)$ we have



          $$left|int_{2npi}^{2npi+pi} e^{-xy_n} sin x , dxright|geqslant e^{-(2npi+pi) y_n}int_{2npi}^{2npi+pi} sin x , dx = 2 e^{-(2npi+pi)y_n}= 2e^{-1}$$



          Since the RHS does not converge to $0$ as $n to infty$, the Cauchy criterion for uniform convergence is violated.



          For the second integral, with $x_n = 1/n in (0,infty)$ we have



          $$left|int_n^infty e^{-x_ny} sin x_n , dyright| = left|frac{sin x_n}{x_n} right|e^{-nx_n} = frac{sin frac{1}{n}}{frac{1}{n}}e^{-1} ,,, xrightarrow[n to infty]{} ,,e^{-1},$$



          and, again, violation of the Cauchy criterion precludes uniform convergence.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
            $endgroup$
            – WoodWorker
            Dec 13 '18 at 0:07












          • $begingroup$
            Also can you take a look at this: math.stackexchange.com/q/3020423/318852
            $endgroup$
            – WoodWorker
            Dec 13 '18 at 0:10






          • 1




            $begingroup$
            @WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
            $endgroup$
            – RRL
            Dec 13 '18 at 5:51






          • 1




            $begingroup$
            Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
            $endgroup$
            – RRL
            Dec 13 '18 at 5:54
















          1












          1








          1





          $begingroup$

          Neither integral is uniformly convergent for values of the parameter in the open interval $(0,infty)$.



          For the first integral, with $y_n = (2npi + pi)^{-1} in (0,infty)$ we have



          $$left|int_{2npi}^{2npi+pi} e^{-xy_n} sin x , dxright|geqslant e^{-(2npi+pi) y_n}int_{2npi}^{2npi+pi} sin x , dx = 2 e^{-(2npi+pi)y_n}= 2e^{-1}$$



          Since the RHS does not converge to $0$ as $n to infty$, the Cauchy criterion for uniform convergence is violated.



          For the second integral, with $x_n = 1/n in (0,infty)$ we have



          $$left|int_n^infty e^{-x_ny} sin x_n , dyright| = left|frac{sin x_n}{x_n} right|e^{-nx_n} = frac{sin frac{1}{n}}{frac{1}{n}}e^{-1} ,,, xrightarrow[n to infty]{} ,,e^{-1},$$



          and, again, violation of the Cauchy criterion precludes uniform convergence.






          share|cite|improve this answer









          $endgroup$



          Neither integral is uniformly convergent for values of the parameter in the open interval $(0,infty)$.



          For the first integral, with $y_n = (2npi + pi)^{-1} in (0,infty)$ we have



          $$left|int_{2npi}^{2npi+pi} e^{-xy_n} sin x , dxright|geqslant e^{-(2npi+pi) y_n}int_{2npi}^{2npi+pi} sin x , dx = 2 e^{-(2npi+pi)y_n}= 2e^{-1}$$



          Since the RHS does not converge to $0$ as $n to infty$, the Cauchy criterion for uniform convergence is violated.



          For the second integral, with $x_n = 1/n in (0,infty)$ we have



          $$left|int_n^infty e^{-x_ny} sin x_n , dyright| = left|frac{sin x_n}{x_n} right|e^{-nx_n} = frac{sin frac{1}{n}}{frac{1}{n}}e^{-1} ,,, xrightarrow[n to infty]{} ,,e^{-1},$$



          and, again, violation of the Cauchy criterion precludes uniform convergence.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 12 '18 at 23:01









          RRLRRL

          53.4k52574




          53.4k52574












          • $begingroup$
            Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
            $endgroup$
            – WoodWorker
            Dec 13 '18 at 0:07












          • $begingroup$
            Also can you take a look at this: math.stackexchange.com/q/3020423/318852
            $endgroup$
            – WoodWorker
            Dec 13 '18 at 0:10






          • 1




            $begingroup$
            @WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
            $endgroup$
            – RRL
            Dec 13 '18 at 5:51






          • 1




            $begingroup$
            Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
            $endgroup$
            – RRL
            Dec 13 '18 at 5:54




















          • $begingroup$
            Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
            $endgroup$
            – WoodWorker
            Dec 13 '18 at 0:07












          • $begingroup$
            Also can you take a look at this: math.stackexchange.com/q/3020423/318852
            $endgroup$
            – WoodWorker
            Dec 13 '18 at 0:10






          • 1




            $begingroup$
            @WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
            $endgroup$
            – RRL
            Dec 13 '18 at 5:51






          • 1




            $begingroup$
            Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
            $endgroup$
            – RRL
            Dec 13 '18 at 5:54


















          $begingroup$
          Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
          $endgroup$
          – WoodWorker
          Dec 13 '18 at 0:07






          $begingroup$
          Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
          $endgroup$
          – WoodWorker
          Dec 13 '18 at 0:07














          $begingroup$
          Also can you take a look at this: math.stackexchange.com/q/3020423/318852
          $endgroup$
          – WoodWorker
          Dec 13 '18 at 0:10




          $begingroup$
          Also can you take a look at this: math.stackexchange.com/q/3020423/318852
          $endgroup$
          – WoodWorker
          Dec 13 '18 at 0:10




          1




          1




          $begingroup$
          @WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
          $endgroup$
          – RRL
          Dec 13 '18 at 5:51




          $begingroup$
          @WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
          $endgroup$
          – RRL
          Dec 13 '18 at 5:51




          1




          1




          $begingroup$
          Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
          $endgroup$
          – RRL
          Dec 13 '18 at 5:54






          $begingroup$
          Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
          $endgroup$
          – RRL
          Dec 13 '18 at 5:54




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037333%2funiform-convergence-of-iterated-improper-integrals-on-0-infty%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

          ComboBox Display Member on multiple fields

          Is it possible to collect Nectar points via Trainline?