The diagonalizable matrices are not dense in the square real matrices












1












$begingroup$


Suppose that $n ge 2$. How to prove that the set $mathcal D subset M_n(mathbb R)$ of the diagonalizable real matrices is not dense in $M_n(mathbb R)$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 13 '17 at 8:46












  • $begingroup$
    @Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:00












  • $begingroup$
    @астонвіллаолофмэллбэрг Such a linear functional can't exist.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:03










  • $begingroup$
    But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 13 '17 at 9:13






  • 1




    $begingroup$
    @астонвіллаолофмэллбэрг $mathcal D$ is not convex.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:41
















1












$begingroup$


Suppose that $n ge 2$. How to prove that the set $mathcal D subset M_n(mathbb R)$ of the diagonalizable real matrices is not dense in $M_n(mathbb R)$?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 13 '17 at 8:46












  • $begingroup$
    @Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:00












  • $begingroup$
    @астонвіллаолофмэллбэрг Such a linear functional can't exist.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:03










  • $begingroup$
    But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 13 '17 at 9:13






  • 1




    $begingroup$
    @астонвіллаолофмэллбэрг $mathcal D$ is not convex.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:41














1












1








1


2



$begingroup$


Suppose that $n ge 2$. How to prove that the set $mathcal D subset M_n(mathbb R)$ of the diagonalizable real matrices is not dense in $M_n(mathbb R)$?










share|cite|improve this question









$endgroup$




Suppose that $n ge 2$. How to prove that the set $mathcal D subset M_n(mathbb R)$ of the diagonalizable real matrices is not dense in $M_n(mathbb R)$?







general-topology matrices diagonalization






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Mar 13 '17 at 8:41









mathcounterexamples.netmathcounterexamples.net

26.9k22158




26.9k22158












  • $begingroup$
    Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 13 '17 at 8:46












  • $begingroup$
    @Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:00












  • $begingroup$
    @астонвіллаолофмэллбэрг Such a linear functional can't exist.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:03










  • $begingroup$
    But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 13 '17 at 9:13






  • 1




    $begingroup$
    @астонвіллаолофмэллбэрг $mathcal D$ is not convex.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:41


















  • $begingroup$
    Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 13 '17 at 8:46












  • $begingroup$
    @Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:00












  • $begingroup$
    @астонвіллаолофмэллбэрг Such a linear functional can't exist.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:03










  • $begingroup$
    But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
    $endgroup$
    – астон вілла олоф мэллбэрг
    Mar 13 '17 at 9:13






  • 1




    $begingroup$
    @астонвіллаолофмэллбэрг $mathcal D$ is not convex.
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:41
















$begingroup$
Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 8:46






$begingroup$
Can you find a non-zero linear functional which vanishes on diagonal matrices? Then, we can use Hahn-Banach theorem to conclude non-density.
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 8:46














$begingroup$
@Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:00






$begingroup$
@Nitrogen $mathcal D$ is not a closet subset. The sequence of diagonalizable matrices $A_nbegin{pmatrix} 1 - 1/n & 1\ 0 & 1+1/nend{pmatrix}$ converges to a non diagonalizable matrix.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:00














$begingroup$
@астонвіллаолофмэллбэрг Such a linear functional can't exist.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:03




$begingroup$
@астонвіллаолофмэллбэрг Such a linear functional can't exist.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:03












$begingroup$
But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 9:13




$begingroup$
But it must, right? If you take the closure of the diagonalizable matrices, then this won't be the entire space, so you can apply Hahn-Banach, I think. (I could still be wrong, but I certainly think it applies in this context).
$endgroup$
– астон вілла олоф мэллбэрг
Mar 13 '17 at 9:13




1




1




$begingroup$
@астонвіллаолофмэллбэрг $mathcal D$ is not convex.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:41




$begingroup$
@астонвіллаолофмэллбэрг $mathcal D$ is not convex.
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:41










1 Answer
1






active

oldest

votes


















5












$begingroup$

Consider the matrix :



$$R=pmatrix{0 & -1cr 1 & 0}in M_2(mathbb{R})$$



which is not diagonalizable since its characteristic polynomial $X^2+1$ does not split in $mathbb{R}[X]$.



Suppose there exists a sequence $(D_n)$ of diagonalizable matrices in $M_2(mathbb{R})$, which converges to $R$.



For every $n$, the characteristic polynomial of $D_n$ has nonnegative discriminant and by continuity of the determinant, it should be the same for $R$, but this is not the case.



This proves that the set $mathcal{D}_2$ of all diagonalizable matrices in $M_2(mathbb{R})$ is not dense in $M_2(mathbb{R})$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:12










  • $begingroup$
    @mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
    $endgroup$
    – Adren
    Mar 13 '17 at 9:19














Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2184461%2fthe-diagonalizable-matrices-are-not-dense-in-the-square-real-matrices%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5












$begingroup$

Consider the matrix :



$$R=pmatrix{0 & -1cr 1 & 0}in M_2(mathbb{R})$$



which is not diagonalizable since its characteristic polynomial $X^2+1$ does not split in $mathbb{R}[X]$.



Suppose there exists a sequence $(D_n)$ of diagonalizable matrices in $M_2(mathbb{R})$, which converges to $R$.



For every $n$, the characteristic polynomial of $D_n$ has nonnegative discriminant and by continuity of the determinant, it should be the same for $R$, but this is not the case.



This proves that the set $mathcal{D}_2$ of all diagonalizable matrices in $M_2(mathbb{R})$ is not dense in $M_2(mathbb{R})$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:12










  • $begingroup$
    @mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
    $endgroup$
    – Adren
    Mar 13 '17 at 9:19


















5












$begingroup$

Consider the matrix :



$$R=pmatrix{0 & -1cr 1 & 0}in M_2(mathbb{R})$$



which is not diagonalizable since its characteristic polynomial $X^2+1$ does not split in $mathbb{R}[X]$.



Suppose there exists a sequence $(D_n)$ of diagonalizable matrices in $M_2(mathbb{R})$, which converges to $R$.



For every $n$, the characteristic polynomial of $D_n$ has nonnegative discriminant and by continuity of the determinant, it should be the same for $R$, but this is not the case.



This proves that the set $mathcal{D}_2$ of all diagonalizable matrices in $M_2(mathbb{R})$ is not dense in $M_2(mathbb{R})$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:12










  • $begingroup$
    @mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
    $endgroup$
    – Adren
    Mar 13 '17 at 9:19
















5












5








5





$begingroup$

Consider the matrix :



$$R=pmatrix{0 & -1cr 1 & 0}in M_2(mathbb{R})$$



which is not diagonalizable since its characteristic polynomial $X^2+1$ does not split in $mathbb{R}[X]$.



Suppose there exists a sequence $(D_n)$ of diagonalizable matrices in $M_2(mathbb{R})$, which converges to $R$.



For every $n$, the characteristic polynomial of $D_n$ has nonnegative discriminant and by continuity of the determinant, it should be the same for $R$, but this is not the case.



This proves that the set $mathcal{D}_2$ of all diagonalizable matrices in $M_2(mathbb{R})$ is not dense in $M_2(mathbb{R})$.






share|cite|improve this answer









$endgroup$



Consider the matrix :



$$R=pmatrix{0 & -1cr 1 & 0}in M_2(mathbb{R})$$



which is not diagonalizable since its characteristic polynomial $X^2+1$ does not split in $mathbb{R}[X]$.



Suppose there exists a sequence $(D_n)$ of diagonalizable matrices in $M_2(mathbb{R})$, which converges to $R$.



For every $n$, the characteristic polynomial of $D_n$ has nonnegative discriminant and by continuity of the determinant, it should be the same for $R$, but this is not the case.



This proves that the set $mathcal{D}_2$ of all diagonalizable matrices in $M_2(mathbb{R})$ is not dense in $M_2(mathbb{R})$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Mar 13 '17 at 9:03









AdrenAdren

5,413519




5,413519












  • $begingroup$
    Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:12










  • $begingroup$
    @mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
    $endgroup$
    – Adren
    Mar 13 '17 at 9:19




















  • $begingroup$
    Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
    $endgroup$
    – mathcounterexamples.net
    Mar 13 '17 at 9:12










  • $begingroup$
    @mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
    $endgroup$
    – Adren
    Mar 13 '17 at 9:19


















$begingroup$
Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:12




$begingroup$
Merci! Qu'est-ce qui t'a fait penser à utiliser le discriminant?
$endgroup$
– mathcounterexamples.net
Mar 13 '17 at 9:12












$begingroup$
@mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
$endgroup$
– Adren
Mar 13 '17 at 9:19






$begingroup$
@mathcounterexamples.net: Le discriminant donne un moyen naturel de savoir si un trinôme est scindé. Si une suite de matrices réelles dont les polynômes caractéristiques sont tous scindés dans $mathbb{R}[X]$ converge, sa limite limite possède ainsi la même propriété (en taille $nge2$ quelconque, on peut utiliser le même outil : le discriminant d'un polynôme $P$ est le résultant de $P$ et de $P'$). D'où l'idée d'aller chercher une matrice réelle dont le polynôme caractéristique n'est pas scindé dans $mathbb{R}[X]$.
$endgroup$
– Adren
Mar 13 '17 at 9:19




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2184461%2fthe-diagonalizable-matrices-are-not-dense-in-the-square-real-matrices%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

ComboBox Display Member on multiple fields

Is it possible to collect Nectar points via Trainline?