Prove that $x(t)$ is bounded












1












$begingroup$


enter image description here



In this problem, I tried the following:
First I show that
$$x(t) = e^{tA}x_0 + intlimits_0^t e^{(t-s)A}f(s)ds$$
Then I take the norm for both sides
$$|x(t)|leq Ke^{-alpha t}|x_0|+left|intlimits_0^t e^{(t-s)A}f(s)dsright|$$
I have used Meiss’s Lemma ($|e^{tA}|leq K e^{-alpha t}|$ for some $K>0$, $alpha >0$).



Could you please help me in what is remaining, and if there is any mistake. Thanks.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    You just bring the norm inside the integral and you conclude
    $endgroup$
    – Federico
    Dec 7 '18 at 16:13






  • 1




    $begingroup$
    And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
    $endgroup$
    – mathcounterexamples.net
    Dec 7 '18 at 16:23












  • $begingroup$
    It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
    $endgroup$
    – Eduardo Elael
    Dec 7 '18 at 16:30










  • $begingroup$
    Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
    $endgroup$
    – Ahmed
    Dec 8 '18 at 20:05












  • $begingroup$
    Could you please check my comment @Federico
    $endgroup$
    – Ahmed
    Dec 8 '18 at 20:23
















1












$begingroup$


enter image description here



In this problem, I tried the following:
First I show that
$$x(t) = e^{tA}x_0 + intlimits_0^t e^{(t-s)A}f(s)ds$$
Then I take the norm for both sides
$$|x(t)|leq Ke^{-alpha t}|x_0|+left|intlimits_0^t e^{(t-s)A}f(s)dsright|$$
I have used Meiss’s Lemma ($|e^{tA}|leq K e^{-alpha t}|$ for some $K>0$, $alpha >0$).



Could you please help me in what is remaining, and if there is any mistake. Thanks.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    You just bring the norm inside the integral and you conclude
    $endgroup$
    – Federico
    Dec 7 '18 at 16:13






  • 1




    $begingroup$
    And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
    $endgroup$
    – mathcounterexamples.net
    Dec 7 '18 at 16:23












  • $begingroup$
    It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
    $endgroup$
    – Eduardo Elael
    Dec 7 '18 at 16:30










  • $begingroup$
    Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
    $endgroup$
    – Ahmed
    Dec 8 '18 at 20:05












  • $begingroup$
    Could you please check my comment @Federico
    $endgroup$
    – Ahmed
    Dec 8 '18 at 20:23














1












1








1


1



$begingroup$


enter image description here



In this problem, I tried the following:
First I show that
$$x(t) = e^{tA}x_0 + intlimits_0^t e^{(t-s)A}f(s)ds$$
Then I take the norm for both sides
$$|x(t)|leq Ke^{-alpha t}|x_0|+left|intlimits_0^t e^{(t-s)A}f(s)dsright|$$
I have used Meiss’s Lemma ($|e^{tA}|leq K e^{-alpha t}|$ for some $K>0$, $alpha >0$).



Could you please help me in what is remaining, and if there is any mistake. Thanks.










share|cite|improve this question









$endgroup$




enter image description here



In this problem, I tried the following:
First I show that
$$x(t) = e^{tA}x_0 + intlimits_0^t e^{(t-s)A}f(s)ds$$
Then I take the norm for both sides
$$|x(t)|leq Ke^{-alpha t}|x_0|+left|intlimits_0^t e^{(t-s)A}f(s)dsright|$$
I have used Meiss’s Lemma ($|e^{tA}|leq K e^{-alpha t}|$ for some $K>0$, $alpha >0$).



Could you please help me in what is remaining, and if there is any mistake. Thanks.







ordinary-differential-equations eigenvalues-eigenvectors






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 7 '18 at 16:10









AhmedAhmed

1,247612




1,247612








  • 2




    $begingroup$
    You just bring the norm inside the integral and you conclude
    $endgroup$
    – Federico
    Dec 7 '18 at 16:13






  • 1




    $begingroup$
    And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
    $endgroup$
    – mathcounterexamples.net
    Dec 7 '18 at 16:23












  • $begingroup$
    It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
    $endgroup$
    – Eduardo Elael
    Dec 7 '18 at 16:30










  • $begingroup$
    Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
    $endgroup$
    – Ahmed
    Dec 8 '18 at 20:05












  • $begingroup$
    Could you please check my comment @Federico
    $endgroup$
    – Ahmed
    Dec 8 '18 at 20:23














  • 2




    $begingroup$
    You just bring the norm inside the integral and you conclude
    $endgroup$
    – Federico
    Dec 7 '18 at 16:13






  • 1




    $begingroup$
    And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
    $endgroup$
    – mathcounterexamples.net
    Dec 7 '18 at 16:23












  • $begingroup$
    It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
    $endgroup$
    – Eduardo Elael
    Dec 7 '18 at 16:30










  • $begingroup$
    Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
    $endgroup$
    – Ahmed
    Dec 8 '18 at 20:05












  • $begingroup$
    Could you please check my comment @Federico
    $endgroup$
    – Ahmed
    Dec 8 '18 at 20:23








2




2




$begingroup$
You just bring the norm inside the integral and you conclude
$endgroup$
– Federico
Dec 7 '18 at 16:13




$begingroup$
You just bring the norm inside the integral and you conclude
$endgroup$
– Federico
Dec 7 '18 at 16:13




1




1




$begingroup$
And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
$endgroup$
– mathcounterexamples.net
Dec 7 '18 at 16:23






$begingroup$
And see Norm bound on exponential matrix with eigenvalue negative real part to bound the matrix norm.
$endgroup$
– mathcounterexamples.net
Dec 7 '18 at 16:23














$begingroup$
It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
$endgroup$
– Eduardo Elael
Dec 7 '18 at 16:30




$begingroup$
It is not enough to bring the norm inside the integral, I think you have to take A into consideration.
$endgroup$
– Eduardo Elael
Dec 7 '18 at 16:30












$begingroup$
Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
$endgroup$
– Ahmed
Dec 8 '18 at 20:05






$begingroup$
Ok ... My problem is: when we bring the norm inside what will happen to the integral as $t to infty$
$endgroup$
– Ahmed
Dec 8 '18 at 20:05














$begingroup$
Could you please check my comment @Federico
$endgroup$
– Ahmed
Dec 8 '18 at 20:23




$begingroup$
Could you please check my comment @Federico
$endgroup$
– Ahmed
Dec 8 '18 at 20:23










1 Answer
1






active

oldest

votes


















2












$begingroup$

Following the already given hints,
$$
begin{split}
|x(t)|
&leq Ke^{-alpha t} |x_0| + left|int_0^t e^{(t-s)A}f(s),dsright| \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}f(s)bigr|,ds \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}bigr||f(s)|,ds \
&leq Ke^{-alpha t} |x_0| + K|f|_infty int_0^t e^{alpha(s-t)},ds \
&= Ke^{-alpha t} |x_0| + K|f|_infty frac{1-e^{-alpha t}}{alpha} \
&leq Ke^{-alpha t} |x_0| + frac{K|f|_infty}alpha .
end{split}
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
    $endgroup$
    – Ahmed
    Dec 11 '18 at 13:49










  • $begingroup$
    What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
    $endgroup$
    – Federico
    Dec 11 '18 at 14:00






  • 1




    $begingroup$
    Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
    $endgroup$
    – Federico
    Dec 11 '18 at 14:01













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030068%2fprove-that-xt-is-bounded%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Following the already given hints,
$$
begin{split}
|x(t)|
&leq Ke^{-alpha t} |x_0| + left|int_0^t e^{(t-s)A}f(s),dsright| \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}f(s)bigr|,ds \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}bigr||f(s)|,ds \
&leq Ke^{-alpha t} |x_0| + K|f|_infty int_0^t e^{alpha(s-t)},ds \
&= Ke^{-alpha t} |x_0| + K|f|_infty frac{1-e^{-alpha t}}{alpha} \
&leq Ke^{-alpha t} |x_0| + frac{K|f|_infty}alpha .
end{split}
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
    $endgroup$
    – Ahmed
    Dec 11 '18 at 13:49










  • $begingroup$
    What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
    $endgroup$
    – Federico
    Dec 11 '18 at 14:00






  • 1




    $begingroup$
    Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
    $endgroup$
    – Federico
    Dec 11 '18 at 14:01


















2












$begingroup$

Following the already given hints,
$$
begin{split}
|x(t)|
&leq Ke^{-alpha t} |x_0| + left|int_0^t e^{(t-s)A}f(s),dsright| \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}f(s)bigr|,ds \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}bigr||f(s)|,ds \
&leq Ke^{-alpha t} |x_0| + K|f|_infty int_0^t e^{alpha(s-t)},ds \
&= Ke^{-alpha t} |x_0| + K|f|_infty frac{1-e^{-alpha t}}{alpha} \
&leq Ke^{-alpha t} |x_0| + frac{K|f|_infty}alpha .
end{split}
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
    $endgroup$
    – Ahmed
    Dec 11 '18 at 13:49










  • $begingroup$
    What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
    $endgroup$
    – Federico
    Dec 11 '18 at 14:00






  • 1




    $begingroup$
    Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
    $endgroup$
    – Federico
    Dec 11 '18 at 14:01
















2












2








2





$begingroup$

Following the already given hints,
$$
begin{split}
|x(t)|
&leq Ke^{-alpha t} |x_0| + left|int_0^t e^{(t-s)A}f(s),dsright| \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}f(s)bigr|,ds \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}bigr||f(s)|,ds \
&leq Ke^{-alpha t} |x_0| + K|f|_infty int_0^t e^{alpha(s-t)},ds \
&= Ke^{-alpha t} |x_0| + K|f|_infty frac{1-e^{-alpha t}}{alpha} \
&leq Ke^{-alpha t} |x_0| + frac{K|f|_infty}alpha .
end{split}
$$






share|cite|improve this answer









$endgroup$



Following the already given hints,
$$
begin{split}
|x(t)|
&leq Ke^{-alpha t} |x_0| + left|int_0^t e^{(t-s)A}f(s),dsright| \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}f(s)bigr|,ds \
&leq Ke^{-alpha t} |x_0| + int_0^t bigl|e^{(t-s)A}bigr||f(s)|,ds \
&leq Ke^{-alpha t} |x_0| + K|f|_infty int_0^t e^{alpha(s-t)},ds \
&= Ke^{-alpha t} |x_0| + K|f|_infty frac{1-e^{-alpha t}}{alpha} \
&leq Ke^{-alpha t} |x_0| + frac{K|f|_infty}alpha .
end{split}
$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 10 '18 at 14:05









FedericoFederico

5,144514




5,144514












  • $begingroup$
    Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
    $endgroup$
    – Ahmed
    Dec 11 '18 at 13:49










  • $begingroup$
    What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
    $endgroup$
    – Federico
    Dec 11 '18 at 14:00






  • 1




    $begingroup$
    Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
    $endgroup$
    – Federico
    Dec 11 '18 at 14:01




















  • $begingroup$
    Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
    $endgroup$
    – Ahmed
    Dec 11 '18 at 13:49










  • $begingroup$
    What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
    $endgroup$
    – Federico
    Dec 11 '18 at 14:00






  • 1




    $begingroup$
    Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
    $endgroup$
    – Federico
    Dec 11 '18 at 14:01


















$begingroup$
Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
$endgroup$
– Ahmed
Dec 11 '18 at 13:49




$begingroup$
Should we eliminate also $e^{-alpha t}$ as $ttoinfty$
$endgroup$
– Ahmed
Dec 11 '18 at 13:49












$begingroup$
What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
$endgroup$
– Federico
Dec 11 '18 at 14:00




$begingroup$
What do you mean? I'm not taking any limits here. I only used $1-e^{-alpha t}leq 1$.
$endgroup$
– Federico
Dec 11 '18 at 14:00




1




1




$begingroup$
Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
$endgroup$
– Federico
Dec 11 '18 at 14:01






$begingroup$
Oh, I see, you mean in the first term? Well then yes you can eliminate $Ke^{-alpha t}|x_0|leq K|x_0|$ because $e^{-alpha t}leq 1$. But you can also keep it because it provides a slightly better inequality
$endgroup$
– Federico
Dec 11 '18 at 14:01




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030068%2fprove-that-xt-is-bounded%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

ComboBox Display Member on multiple fields

Is it possible to collect Nectar points via Trainline?