Laplace Transform of Complementary Error Function












0












$begingroup$


I need to apply one Laplace transform formula while I have no idea how to prove it:
$$int_0^infty e^{-st} e^{a k} e^{a^2 t}
operatorname{erfc} left( a sqrt{t} + frac{k}{2 sqrt{t}} right) dt =
frac{e^{-k sqrt{s}}}{sqrt{s} (sqrt{s}+a)},
quad k>0 land a in mathbb{C}, $$

where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.



Could anyone help me with it? Thanks in advance.










share|cite|improve this question











$endgroup$



migrated from mathematica.stackexchange.com Dec 9 '18 at 19:09


This question came from our site for users of Wolfram Mathematica.














  • 1




    $begingroup$
    After dropping the constant factor $e^{a k}$ and differentiating wrt $k$, we need to show that $$int mathcal L_{t to s} {left[ -frac {e^{-a k - k^2/(4 t)}} {sqrt{pi t}} right]} dk = int -frac {e^{-a k - k sqrt s}} {sqrt s} dk = frac {e^{-a k - k sqrt s}} {sqrt s (sqrt s + a)}.$$
    $endgroup$
    – Maxim
    Dec 17 '18 at 11:48












  • $begingroup$
    Thanks for that. I like your method. My way is simply doing this integral step by step. However, an initial condition is required in your way. I take $k=0$, in that case, we need a>0 for the Laplace transform of $e^{a^2 t}erfc(asqrt{t})$. I am wondering how to extend "a" to the whole complex plane.
    $endgroup$
    – gouwangzhangdong
    Dec 19 '18 at 2:16








  • 1




    $begingroup$
    You can extend your formula to $k geq 0 land a in mathbb C$. $int_0^infty e^{a^2 t} operatorname{erfc}(a sqrt t) e^{-s t} dt$ converges for $$(operatorname{Re} a geq 0 land operatorname{Re} s > 0) lor (operatorname{Re} a < 0 land operatorname{Re} s > max(operatorname{Re}a^2, 0)),$$ in agreement with the location of the zeroes of $sqrt s (sqrt s + a)$. Another way is to multiply back by $e^{a k}$ and take $k = infty$ to show that the integration constant is zero.
    $endgroup$
    – Maxim
    Dec 19 '18 at 14:52










  • $begingroup$
    Many thanks.Fantastic. I really should not forget this analytic continuity issue. I have another question related to the complementary error function, could you please take a look? math.stackexchange.com/questions/3047021/…
    $endgroup$
    – gouwangzhangdong
    Dec 20 '18 at 0:43


















0












$begingroup$


I need to apply one Laplace transform formula while I have no idea how to prove it:
$$int_0^infty e^{-st} e^{a k} e^{a^2 t}
operatorname{erfc} left( a sqrt{t} + frac{k}{2 sqrt{t}} right) dt =
frac{e^{-k sqrt{s}}}{sqrt{s} (sqrt{s}+a)},
quad k>0 land a in mathbb{C}, $$

where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.



Could anyone help me with it? Thanks in advance.










share|cite|improve this question











$endgroup$



migrated from mathematica.stackexchange.com Dec 9 '18 at 19:09


This question came from our site for users of Wolfram Mathematica.














  • 1




    $begingroup$
    After dropping the constant factor $e^{a k}$ and differentiating wrt $k$, we need to show that $$int mathcal L_{t to s} {left[ -frac {e^{-a k - k^2/(4 t)}} {sqrt{pi t}} right]} dk = int -frac {e^{-a k - k sqrt s}} {sqrt s} dk = frac {e^{-a k - k sqrt s}} {sqrt s (sqrt s + a)}.$$
    $endgroup$
    – Maxim
    Dec 17 '18 at 11:48












  • $begingroup$
    Thanks for that. I like your method. My way is simply doing this integral step by step. However, an initial condition is required in your way. I take $k=0$, in that case, we need a>0 for the Laplace transform of $e^{a^2 t}erfc(asqrt{t})$. I am wondering how to extend "a" to the whole complex plane.
    $endgroup$
    – gouwangzhangdong
    Dec 19 '18 at 2:16








  • 1




    $begingroup$
    You can extend your formula to $k geq 0 land a in mathbb C$. $int_0^infty e^{a^2 t} operatorname{erfc}(a sqrt t) e^{-s t} dt$ converges for $$(operatorname{Re} a geq 0 land operatorname{Re} s > 0) lor (operatorname{Re} a < 0 land operatorname{Re} s > max(operatorname{Re}a^2, 0)),$$ in agreement with the location of the zeroes of $sqrt s (sqrt s + a)$. Another way is to multiply back by $e^{a k}$ and take $k = infty$ to show that the integration constant is zero.
    $endgroup$
    – Maxim
    Dec 19 '18 at 14:52










  • $begingroup$
    Many thanks.Fantastic. I really should not forget this analytic continuity issue. I have another question related to the complementary error function, could you please take a look? math.stackexchange.com/questions/3047021/…
    $endgroup$
    – gouwangzhangdong
    Dec 20 '18 at 0:43
















0












0








0


1



$begingroup$


I need to apply one Laplace transform formula while I have no idea how to prove it:
$$int_0^infty e^{-st} e^{a k} e^{a^2 t}
operatorname{erfc} left( a sqrt{t} + frac{k}{2 sqrt{t}} right) dt =
frac{e^{-k sqrt{s}}}{sqrt{s} (sqrt{s}+a)},
quad k>0 land a in mathbb{C}, $$

where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.



Could anyone help me with it? Thanks in advance.










share|cite|improve this question











$endgroup$




I need to apply one Laplace transform formula while I have no idea how to prove it:
$$int_0^infty e^{-st} e^{a k} e^{a^2 t}
operatorname{erfc} left( a sqrt{t} + frac{k}{2 sqrt{t}} right) dt =
frac{e^{-k sqrt{s}}}{sqrt{s} (sqrt{s}+a)},
quad k>0 land a in mathbb{C}, $$

where $operatorname{erfc}(t) = frac{2}{sqrt{pi}} int_t^infty e^{-x^2} dx$.



Could anyone help me with it? Thanks in advance.







laplace-transform integral-transforms error-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 17 '18 at 11:54









Maxim

5,9881221




5,9881221










asked Dec 8 '18 at 11:21









gouwangzhangdonggouwangzhangdong

888




888




migrated from mathematica.stackexchange.com Dec 9 '18 at 19:09


This question came from our site for users of Wolfram Mathematica.









migrated from mathematica.stackexchange.com Dec 9 '18 at 19:09


This question came from our site for users of Wolfram Mathematica.










  • 1




    $begingroup$
    After dropping the constant factor $e^{a k}$ and differentiating wrt $k$, we need to show that $$int mathcal L_{t to s} {left[ -frac {e^{-a k - k^2/(4 t)}} {sqrt{pi t}} right]} dk = int -frac {e^{-a k - k sqrt s}} {sqrt s} dk = frac {e^{-a k - k sqrt s}} {sqrt s (sqrt s + a)}.$$
    $endgroup$
    – Maxim
    Dec 17 '18 at 11:48












  • $begingroup$
    Thanks for that. I like your method. My way is simply doing this integral step by step. However, an initial condition is required in your way. I take $k=0$, in that case, we need a>0 for the Laplace transform of $e^{a^2 t}erfc(asqrt{t})$. I am wondering how to extend "a" to the whole complex plane.
    $endgroup$
    – gouwangzhangdong
    Dec 19 '18 at 2:16








  • 1




    $begingroup$
    You can extend your formula to $k geq 0 land a in mathbb C$. $int_0^infty e^{a^2 t} operatorname{erfc}(a sqrt t) e^{-s t} dt$ converges for $$(operatorname{Re} a geq 0 land operatorname{Re} s > 0) lor (operatorname{Re} a < 0 land operatorname{Re} s > max(operatorname{Re}a^2, 0)),$$ in agreement with the location of the zeroes of $sqrt s (sqrt s + a)$. Another way is to multiply back by $e^{a k}$ and take $k = infty$ to show that the integration constant is zero.
    $endgroup$
    – Maxim
    Dec 19 '18 at 14:52










  • $begingroup$
    Many thanks.Fantastic. I really should not forget this analytic continuity issue. I have another question related to the complementary error function, could you please take a look? math.stackexchange.com/questions/3047021/…
    $endgroup$
    – gouwangzhangdong
    Dec 20 '18 at 0:43
















  • 1




    $begingroup$
    After dropping the constant factor $e^{a k}$ and differentiating wrt $k$, we need to show that $$int mathcal L_{t to s} {left[ -frac {e^{-a k - k^2/(4 t)}} {sqrt{pi t}} right]} dk = int -frac {e^{-a k - k sqrt s}} {sqrt s} dk = frac {e^{-a k - k sqrt s}} {sqrt s (sqrt s + a)}.$$
    $endgroup$
    – Maxim
    Dec 17 '18 at 11:48












  • $begingroup$
    Thanks for that. I like your method. My way is simply doing this integral step by step. However, an initial condition is required in your way. I take $k=0$, in that case, we need a>0 for the Laplace transform of $e^{a^2 t}erfc(asqrt{t})$. I am wondering how to extend "a" to the whole complex plane.
    $endgroup$
    – gouwangzhangdong
    Dec 19 '18 at 2:16








  • 1




    $begingroup$
    You can extend your formula to $k geq 0 land a in mathbb C$. $int_0^infty e^{a^2 t} operatorname{erfc}(a sqrt t) e^{-s t} dt$ converges for $$(operatorname{Re} a geq 0 land operatorname{Re} s > 0) lor (operatorname{Re} a < 0 land operatorname{Re} s > max(operatorname{Re}a^2, 0)),$$ in agreement with the location of the zeroes of $sqrt s (sqrt s + a)$. Another way is to multiply back by $e^{a k}$ and take $k = infty$ to show that the integration constant is zero.
    $endgroup$
    – Maxim
    Dec 19 '18 at 14:52










  • $begingroup$
    Many thanks.Fantastic. I really should not forget this analytic continuity issue. I have another question related to the complementary error function, could you please take a look? math.stackexchange.com/questions/3047021/…
    $endgroup$
    – gouwangzhangdong
    Dec 20 '18 at 0:43










1




1




$begingroup$
After dropping the constant factor $e^{a k}$ and differentiating wrt $k$, we need to show that $$int mathcal L_{t to s} {left[ -frac {e^{-a k - k^2/(4 t)}} {sqrt{pi t}} right]} dk = int -frac {e^{-a k - k sqrt s}} {sqrt s} dk = frac {e^{-a k - k sqrt s}} {sqrt s (sqrt s + a)}.$$
$endgroup$
– Maxim
Dec 17 '18 at 11:48






$begingroup$
After dropping the constant factor $e^{a k}$ and differentiating wrt $k$, we need to show that $$int mathcal L_{t to s} {left[ -frac {e^{-a k - k^2/(4 t)}} {sqrt{pi t}} right]} dk = int -frac {e^{-a k - k sqrt s}} {sqrt s} dk = frac {e^{-a k - k sqrt s}} {sqrt s (sqrt s + a)}.$$
$endgroup$
– Maxim
Dec 17 '18 at 11:48














$begingroup$
Thanks for that. I like your method. My way is simply doing this integral step by step. However, an initial condition is required in your way. I take $k=0$, in that case, we need a>0 for the Laplace transform of $e^{a^2 t}erfc(asqrt{t})$. I am wondering how to extend "a" to the whole complex plane.
$endgroup$
– gouwangzhangdong
Dec 19 '18 at 2:16






$begingroup$
Thanks for that. I like your method. My way is simply doing this integral step by step. However, an initial condition is required in your way. I take $k=0$, in that case, we need a>0 for the Laplace transform of $e^{a^2 t}erfc(asqrt{t})$. I am wondering how to extend "a" to the whole complex plane.
$endgroup$
– gouwangzhangdong
Dec 19 '18 at 2:16






1




1




$begingroup$
You can extend your formula to $k geq 0 land a in mathbb C$. $int_0^infty e^{a^2 t} operatorname{erfc}(a sqrt t) e^{-s t} dt$ converges for $$(operatorname{Re} a geq 0 land operatorname{Re} s > 0) lor (operatorname{Re} a < 0 land operatorname{Re} s > max(operatorname{Re}a^2, 0)),$$ in agreement with the location of the zeroes of $sqrt s (sqrt s + a)$. Another way is to multiply back by $e^{a k}$ and take $k = infty$ to show that the integration constant is zero.
$endgroup$
– Maxim
Dec 19 '18 at 14:52




$begingroup$
You can extend your formula to $k geq 0 land a in mathbb C$. $int_0^infty e^{a^2 t} operatorname{erfc}(a sqrt t) e^{-s t} dt$ converges for $$(operatorname{Re} a geq 0 land operatorname{Re} s > 0) lor (operatorname{Re} a < 0 land operatorname{Re} s > max(operatorname{Re}a^2, 0)),$$ in agreement with the location of the zeroes of $sqrt s (sqrt s + a)$. Another way is to multiply back by $e^{a k}$ and take $k = infty$ to show that the integration constant is zero.
$endgroup$
– Maxim
Dec 19 '18 at 14:52












$begingroup$
Many thanks.Fantastic. I really should not forget this analytic continuity issue. I have another question related to the complementary error function, could you please take a look? math.stackexchange.com/questions/3047021/…
$endgroup$
– gouwangzhangdong
Dec 20 '18 at 0:43






$begingroup$
Many thanks.Fantastic. I really should not forget this analytic continuity issue. I have another question related to the complementary error function, could you please take a look? math.stackexchange.com/questions/3047021/…
$endgroup$
– gouwangzhangdong
Dec 20 '18 at 0:43












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032814%2flaplace-transform-of-complementary-error-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032814%2flaplace-transform-of-complementary-error-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

ComboBox Display Member on multiple fields

Is it possible to collect Nectar points via Trainline?