Verifying Green's theorem for a function












0












$begingroup$


Let



$G = { (x,y) in mathbb{R}^2 : x^2+4y^2 >1, x^2+y^2 < 4 } $



$ int_G x^2+y^2 d(x,y) $



I want to verify Green's Theorem :
$ oint_{ partial G } f n ds = int_G operatorname{div}f, dx $



I solved for he righthand side:



$ int_G operatorname{div}f dx = frac{25}{32} pi $,



just by calculating the Integral for the circle and the ellipse separately and subtract.



For the lefthand side, I need to find $ f: G rightarrow mathbb{R^2} $ so that $ operatorname{div}f = x^2+y^2 $
that can be $ f=( frac{1}{3} x^3 , frac{1}{3} y^3 ) $



now my question is, how to proceed? :0
Do I have to split the region?
Is $ n= frac{1}{ sqrt{ (frac{1}{3} x^3 )^2+ ( frac{1}{3}y^3 )^2}} begin{pmatrix} frac{1}{3} x^3 \ frac{1}{3} y^3 end{pmatrix} $ ?



Looking forward to any help! :-)










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
    $endgroup$
    – TurlocTheRed
    Nov 28 '18 at 19:55










  • $begingroup$
    yes, it is $ div f = x^2+y^2 $
    $endgroup$
    – wondering1123
    Nov 28 '18 at 20:04
















0












$begingroup$


Let



$G = { (x,y) in mathbb{R}^2 : x^2+4y^2 >1, x^2+y^2 < 4 } $



$ int_G x^2+y^2 d(x,y) $



I want to verify Green's Theorem :
$ oint_{ partial G } f n ds = int_G operatorname{div}f, dx $



I solved for he righthand side:



$ int_G operatorname{div}f dx = frac{25}{32} pi $,



just by calculating the Integral for the circle and the ellipse separately and subtract.



For the lefthand side, I need to find $ f: G rightarrow mathbb{R^2} $ so that $ operatorname{div}f = x^2+y^2 $
that can be $ f=( frac{1}{3} x^3 , frac{1}{3} y^3 ) $



now my question is, how to proceed? :0
Do I have to split the region?
Is $ n= frac{1}{ sqrt{ (frac{1}{3} x^3 )^2+ ( frac{1}{3}y^3 )^2}} begin{pmatrix} frac{1}{3} x^3 \ frac{1}{3} y^3 end{pmatrix} $ ?



Looking forward to any help! :-)










share|cite|improve this question











$endgroup$












  • $begingroup$
    Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
    $endgroup$
    – TurlocTheRed
    Nov 28 '18 at 19:55










  • $begingroup$
    yes, it is $ div f = x^2+y^2 $
    $endgroup$
    – wondering1123
    Nov 28 '18 at 20:04














0












0








0





$begingroup$


Let



$G = { (x,y) in mathbb{R}^2 : x^2+4y^2 >1, x^2+y^2 < 4 } $



$ int_G x^2+y^2 d(x,y) $



I want to verify Green's Theorem :
$ oint_{ partial G } f n ds = int_G operatorname{div}f, dx $



I solved for he righthand side:



$ int_G operatorname{div}f dx = frac{25}{32} pi $,



just by calculating the Integral for the circle and the ellipse separately and subtract.



For the lefthand side, I need to find $ f: G rightarrow mathbb{R^2} $ so that $ operatorname{div}f = x^2+y^2 $
that can be $ f=( frac{1}{3} x^3 , frac{1}{3} y^3 ) $



now my question is, how to proceed? :0
Do I have to split the region?
Is $ n= frac{1}{ sqrt{ (frac{1}{3} x^3 )^2+ ( frac{1}{3}y^3 )^2}} begin{pmatrix} frac{1}{3} x^3 \ frac{1}{3} y^3 end{pmatrix} $ ?



Looking forward to any help! :-)










share|cite|improve this question











$endgroup$




Let



$G = { (x,y) in mathbb{R}^2 : x^2+4y^2 >1, x^2+y^2 < 4 } $



$ int_G x^2+y^2 d(x,y) $



I want to verify Green's Theorem :
$ oint_{ partial G } f n ds = int_G operatorname{div}f, dx $



I solved for he righthand side:



$ int_G operatorname{div}f dx = frac{25}{32} pi $,



just by calculating the Integral for the circle and the ellipse separately and subtract.



For the lefthand side, I need to find $ f: G rightarrow mathbb{R^2} $ so that $ operatorname{div}f = x^2+y^2 $
that can be $ f=( frac{1}{3} x^3 , frac{1}{3} y^3 ) $



now my question is, how to proceed? :0
Do I have to split the region?
Is $ n= frac{1}{ sqrt{ (frac{1}{3} x^3 )^2+ ( frac{1}{3}y^3 )^2}} begin{pmatrix} frac{1}{3} x^3 \ frac{1}{3} y^3 end{pmatrix} $ ?



Looking forward to any help! :-)







real-analysis integration gaussian-integral greens-theorem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 28 '18 at 16:56









Bernard

120k740113




120k740113










asked Nov 28 '18 at 16:47









wondering1123wondering1123

14411




14411












  • $begingroup$
    Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
    $endgroup$
    – TurlocTheRed
    Nov 28 '18 at 19:55










  • $begingroup$
    yes, it is $ div f = x^2+y^2 $
    $endgroup$
    – wondering1123
    Nov 28 '18 at 20:04


















  • $begingroup$
    Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
    $endgroup$
    – TurlocTheRed
    Nov 28 '18 at 19:55










  • $begingroup$
    yes, it is $ div f = x^2+y^2 $
    $endgroup$
    – wondering1123
    Nov 28 '18 at 20:04
















$begingroup$
Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
$endgroup$
– TurlocTheRed
Nov 28 '18 at 19:55




$begingroup$
Is $x^2+y^2$ already the divergence, or are you getting the divergence from that some how?
$endgroup$
– TurlocTheRed
Nov 28 '18 at 19:55












$begingroup$
yes, it is $ div f = x^2+y^2 $
$endgroup$
– wondering1123
Nov 28 '18 at 20:04




$begingroup$
yes, it is $ div f = x^2+y^2 $
$endgroup$
– wondering1123
Nov 28 '18 at 20:04










2 Answers
2






active

oldest

votes


















1












$begingroup$

$mathbf r$ is not normal to the ellipse. If the boundary is parametrized as $mathbf r(t) = (x(t), y(t))$, then $mathbf n(t) = (y'(t), -x'(t))$ is normal to the boundary and
$$int_{partial D} mathbf F cdot frac {mathbf n} {|mathbf n|} ,ds =
int_a^b mathbf F cdot frac {mathbf n} {|mathbf n|} ,|mathbf r'| ,dt =
int_a^b mathbf F cdot mathbf n ,dt.$$

We have $mathbf F = (x^3/3, y^3/3), ,mathbf r_1(t) = (cos t, 1/2 sin t), ,mathbf r_2(t) = (2 cos t, 2 sin t)$, thus
$$begin{aligned}
&begin{aligned}
int_{partial D} mathbf F cdot mathbf n ,dt =
&int_0^{2 pi} left( frac {cos^3 t} 3, frac {sin^3 t} {24} right) cdot
left( -frac {cos t} 2, -sin t right) dt + {} \
&int_0^{2 pi} left( frac {8 cos^3 t} 3, frac {8 sin^3 t} {3} right) cdot
(2 cos t, 2 sin t) ,dt,
end{aligned} \
&int_D nabla cdot mathbf F ,dS =
int_0^{2 pi} int_{1/sqrt{cos^2 t + 4 sin^2 t}}^2 ,r^3 dr dt.
end{aligned}$$

Both are equal to $251 pi/32$.






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $f=x^2+y^2=r^2=f=nabla cdot (r^3/4 hat{r})$



    So $vec{F}=frac{r^3}{4}hat{r}$



    The normal to a "surface" in 2d is the unit vector perpendicular to the tangent line.



    The curves here can be parameterized as



    $x=acos{theta}$



    $y=bsin{theta}$



    Where for the ellipse $a=1$, $b=1/2$. For the circle $a=b=2$



    The tangent line vector is $-asin{theta}hat{i}+bcos{theta}hat{j}$



    So the normal line vector is $bcos{theta}hat{i}+asin{theta}vec{j}$



    So the unit normal



    $hat{n}= frac{<bcos{theta}, asin{theta}>}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}}$



    $vec{r}=<acos{theta}, bsin{theta}>$



    So $vec{F}cdot hat{n}dA =frac{r^2}{4}frac{ab}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}} dtheta $



    You probably want to run that integral clockwise around the ellipse and counter clockwise around the circle. Integrate from 0 to $2pi$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      The norm of $n$ doesn't contain an $a b$ term.
      $endgroup$
      – Maxim
      Dec 2 '18 at 9:14










    • $begingroup$
      Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
      $endgroup$
      – TurlocTheRed
      Dec 3 '18 at 14:44










    • $begingroup$
      I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
      $endgroup$
      – Maxim
      Dec 3 '18 at 16:07












    • $begingroup$
      $nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
      $endgroup$
      – TurlocTheRed
      Dec 4 '18 at 15:58












    • $begingroup$
      I asee what you mean about the norm. Corrected! Thanks!
      $endgroup$
      – TurlocTheRed
      Dec 4 '18 at 16:00













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017365%2fverifying-greens-theorem-for-a-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    $mathbf r$ is not normal to the ellipse. If the boundary is parametrized as $mathbf r(t) = (x(t), y(t))$, then $mathbf n(t) = (y'(t), -x'(t))$ is normal to the boundary and
    $$int_{partial D} mathbf F cdot frac {mathbf n} {|mathbf n|} ,ds =
    int_a^b mathbf F cdot frac {mathbf n} {|mathbf n|} ,|mathbf r'| ,dt =
    int_a^b mathbf F cdot mathbf n ,dt.$$

    We have $mathbf F = (x^3/3, y^3/3), ,mathbf r_1(t) = (cos t, 1/2 sin t), ,mathbf r_2(t) = (2 cos t, 2 sin t)$, thus
    $$begin{aligned}
    &begin{aligned}
    int_{partial D} mathbf F cdot mathbf n ,dt =
    &int_0^{2 pi} left( frac {cos^3 t} 3, frac {sin^3 t} {24} right) cdot
    left( -frac {cos t} 2, -sin t right) dt + {} \
    &int_0^{2 pi} left( frac {8 cos^3 t} 3, frac {8 sin^3 t} {3} right) cdot
    (2 cos t, 2 sin t) ,dt,
    end{aligned} \
    &int_D nabla cdot mathbf F ,dS =
    int_0^{2 pi} int_{1/sqrt{cos^2 t + 4 sin^2 t}}^2 ,r^3 dr dt.
    end{aligned}$$

    Both are equal to $251 pi/32$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      $mathbf r$ is not normal to the ellipse. If the boundary is parametrized as $mathbf r(t) = (x(t), y(t))$, then $mathbf n(t) = (y'(t), -x'(t))$ is normal to the boundary and
      $$int_{partial D} mathbf F cdot frac {mathbf n} {|mathbf n|} ,ds =
      int_a^b mathbf F cdot frac {mathbf n} {|mathbf n|} ,|mathbf r'| ,dt =
      int_a^b mathbf F cdot mathbf n ,dt.$$

      We have $mathbf F = (x^3/3, y^3/3), ,mathbf r_1(t) = (cos t, 1/2 sin t), ,mathbf r_2(t) = (2 cos t, 2 sin t)$, thus
      $$begin{aligned}
      &begin{aligned}
      int_{partial D} mathbf F cdot mathbf n ,dt =
      &int_0^{2 pi} left( frac {cos^3 t} 3, frac {sin^3 t} {24} right) cdot
      left( -frac {cos t} 2, -sin t right) dt + {} \
      &int_0^{2 pi} left( frac {8 cos^3 t} 3, frac {8 sin^3 t} {3} right) cdot
      (2 cos t, 2 sin t) ,dt,
      end{aligned} \
      &int_D nabla cdot mathbf F ,dS =
      int_0^{2 pi} int_{1/sqrt{cos^2 t + 4 sin^2 t}}^2 ,r^3 dr dt.
      end{aligned}$$

      Both are equal to $251 pi/32$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        $mathbf r$ is not normal to the ellipse. If the boundary is parametrized as $mathbf r(t) = (x(t), y(t))$, then $mathbf n(t) = (y'(t), -x'(t))$ is normal to the boundary and
        $$int_{partial D} mathbf F cdot frac {mathbf n} {|mathbf n|} ,ds =
        int_a^b mathbf F cdot frac {mathbf n} {|mathbf n|} ,|mathbf r'| ,dt =
        int_a^b mathbf F cdot mathbf n ,dt.$$

        We have $mathbf F = (x^3/3, y^3/3), ,mathbf r_1(t) = (cos t, 1/2 sin t), ,mathbf r_2(t) = (2 cos t, 2 sin t)$, thus
        $$begin{aligned}
        &begin{aligned}
        int_{partial D} mathbf F cdot mathbf n ,dt =
        &int_0^{2 pi} left( frac {cos^3 t} 3, frac {sin^3 t} {24} right) cdot
        left( -frac {cos t} 2, -sin t right) dt + {} \
        &int_0^{2 pi} left( frac {8 cos^3 t} 3, frac {8 sin^3 t} {3} right) cdot
        (2 cos t, 2 sin t) ,dt,
        end{aligned} \
        &int_D nabla cdot mathbf F ,dS =
        int_0^{2 pi} int_{1/sqrt{cos^2 t + 4 sin^2 t}}^2 ,r^3 dr dt.
        end{aligned}$$

        Both are equal to $251 pi/32$.






        share|cite|improve this answer









        $endgroup$



        $mathbf r$ is not normal to the ellipse. If the boundary is parametrized as $mathbf r(t) = (x(t), y(t))$, then $mathbf n(t) = (y'(t), -x'(t))$ is normal to the boundary and
        $$int_{partial D} mathbf F cdot frac {mathbf n} {|mathbf n|} ,ds =
        int_a^b mathbf F cdot frac {mathbf n} {|mathbf n|} ,|mathbf r'| ,dt =
        int_a^b mathbf F cdot mathbf n ,dt.$$

        We have $mathbf F = (x^3/3, y^3/3), ,mathbf r_1(t) = (cos t, 1/2 sin t), ,mathbf r_2(t) = (2 cos t, 2 sin t)$, thus
        $$begin{aligned}
        &begin{aligned}
        int_{partial D} mathbf F cdot mathbf n ,dt =
        &int_0^{2 pi} left( frac {cos^3 t} 3, frac {sin^3 t} {24} right) cdot
        left( -frac {cos t} 2, -sin t right) dt + {} \
        &int_0^{2 pi} left( frac {8 cos^3 t} 3, frac {8 sin^3 t} {3} right) cdot
        (2 cos t, 2 sin t) ,dt,
        end{aligned} \
        &int_D nabla cdot mathbf F ,dS =
        int_0^{2 pi} int_{1/sqrt{cos^2 t + 4 sin^2 t}}^2 ,r^3 dr dt.
        end{aligned}$$

        Both are equal to $251 pi/32$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 2 '18 at 9:09









        MaximMaxim

        5,1631219




        5,1631219























            0












            $begingroup$

            $f=x^2+y^2=r^2=f=nabla cdot (r^3/4 hat{r})$



            So $vec{F}=frac{r^3}{4}hat{r}$



            The normal to a "surface" in 2d is the unit vector perpendicular to the tangent line.



            The curves here can be parameterized as



            $x=acos{theta}$



            $y=bsin{theta}$



            Where for the ellipse $a=1$, $b=1/2$. For the circle $a=b=2$



            The tangent line vector is $-asin{theta}hat{i}+bcos{theta}hat{j}$



            So the normal line vector is $bcos{theta}hat{i}+asin{theta}vec{j}$



            So the unit normal



            $hat{n}= frac{<bcos{theta}, asin{theta}>}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}}$



            $vec{r}=<acos{theta}, bsin{theta}>$



            So $vec{F}cdot hat{n}dA =frac{r^2}{4}frac{ab}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}} dtheta $



            You probably want to run that integral clockwise around the ellipse and counter clockwise around the circle. Integrate from 0 to $2pi$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              The norm of $n$ doesn't contain an $a b$ term.
              $endgroup$
              – Maxim
              Dec 2 '18 at 9:14










            • $begingroup$
              Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
              $endgroup$
              – TurlocTheRed
              Dec 3 '18 at 14:44










            • $begingroup$
              I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
              $endgroup$
              – Maxim
              Dec 3 '18 at 16:07












            • $begingroup$
              $nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
              $endgroup$
              – TurlocTheRed
              Dec 4 '18 at 15:58












            • $begingroup$
              I asee what you mean about the norm. Corrected! Thanks!
              $endgroup$
              – TurlocTheRed
              Dec 4 '18 at 16:00


















            0












            $begingroup$

            $f=x^2+y^2=r^2=f=nabla cdot (r^3/4 hat{r})$



            So $vec{F}=frac{r^3}{4}hat{r}$



            The normal to a "surface" in 2d is the unit vector perpendicular to the tangent line.



            The curves here can be parameterized as



            $x=acos{theta}$



            $y=bsin{theta}$



            Where for the ellipse $a=1$, $b=1/2$. For the circle $a=b=2$



            The tangent line vector is $-asin{theta}hat{i}+bcos{theta}hat{j}$



            So the normal line vector is $bcos{theta}hat{i}+asin{theta}vec{j}$



            So the unit normal



            $hat{n}= frac{<bcos{theta}, asin{theta}>}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}}$



            $vec{r}=<acos{theta}, bsin{theta}>$



            So $vec{F}cdot hat{n}dA =frac{r^2}{4}frac{ab}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}} dtheta $



            You probably want to run that integral clockwise around the ellipse and counter clockwise around the circle. Integrate from 0 to $2pi$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              The norm of $n$ doesn't contain an $a b$ term.
              $endgroup$
              – Maxim
              Dec 2 '18 at 9:14










            • $begingroup$
              Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
              $endgroup$
              – TurlocTheRed
              Dec 3 '18 at 14:44










            • $begingroup$
              I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
              $endgroup$
              – Maxim
              Dec 3 '18 at 16:07












            • $begingroup$
              $nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
              $endgroup$
              – TurlocTheRed
              Dec 4 '18 at 15:58












            • $begingroup$
              I asee what you mean about the norm. Corrected! Thanks!
              $endgroup$
              – TurlocTheRed
              Dec 4 '18 at 16:00
















            0












            0








            0





            $begingroup$

            $f=x^2+y^2=r^2=f=nabla cdot (r^3/4 hat{r})$



            So $vec{F}=frac{r^3}{4}hat{r}$



            The normal to a "surface" in 2d is the unit vector perpendicular to the tangent line.



            The curves here can be parameterized as



            $x=acos{theta}$



            $y=bsin{theta}$



            Where for the ellipse $a=1$, $b=1/2$. For the circle $a=b=2$



            The tangent line vector is $-asin{theta}hat{i}+bcos{theta}hat{j}$



            So the normal line vector is $bcos{theta}hat{i}+asin{theta}vec{j}$



            So the unit normal



            $hat{n}= frac{<bcos{theta}, asin{theta}>}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}}$



            $vec{r}=<acos{theta}, bsin{theta}>$



            So $vec{F}cdot hat{n}dA =frac{r^2}{4}frac{ab}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}} dtheta $



            You probably want to run that integral clockwise around the ellipse and counter clockwise around the circle. Integrate from 0 to $2pi$






            share|cite|improve this answer











            $endgroup$



            $f=x^2+y^2=r^2=f=nabla cdot (r^3/4 hat{r})$



            So $vec{F}=frac{r^3}{4}hat{r}$



            The normal to a "surface" in 2d is the unit vector perpendicular to the tangent line.



            The curves here can be parameterized as



            $x=acos{theta}$



            $y=bsin{theta}$



            Where for the ellipse $a=1$, $b=1/2$. For the circle $a=b=2$



            The tangent line vector is $-asin{theta}hat{i}+bcos{theta}hat{j}$



            So the normal line vector is $bcos{theta}hat{i}+asin{theta}vec{j}$



            So the unit normal



            $hat{n}= frac{<bcos{theta}, asin{theta}>}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}}$



            $vec{r}=<acos{theta}, bsin{theta}>$



            So $vec{F}cdot hat{n}dA =frac{r^2}{4}frac{ab}{sqrt{b^2cos^2{theta}+a^2sin^2{theta}}} dtheta $



            You probably want to run that integral clockwise around the ellipse and counter clockwise around the circle. Integrate from 0 to $2pi$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 4 '18 at 16:15

























            answered Nov 28 '18 at 20:12









            TurlocTheRedTurlocTheRed

            856311




            856311












            • $begingroup$
              The norm of $n$ doesn't contain an $a b$ term.
              $endgroup$
              – Maxim
              Dec 2 '18 at 9:14










            • $begingroup$
              Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
              $endgroup$
              – TurlocTheRed
              Dec 3 '18 at 14:44










            • $begingroup$
              I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
              $endgroup$
              – Maxim
              Dec 3 '18 at 16:07












            • $begingroup$
              $nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
              $endgroup$
              – TurlocTheRed
              Dec 4 '18 at 15:58












            • $begingroup$
              I asee what you mean about the norm. Corrected! Thanks!
              $endgroup$
              – TurlocTheRed
              Dec 4 '18 at 16:00




















            • $begingroup$
              The norm of $n$ doesn't contain an $a b$ term.
              $endgroup$
              – Maxim
              Dec 2 '18 at 9:14










            • $begingroup$
              Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
              $endgroup$
              – TurlocTheRed
              Dec 3 '18 at 14:44










            • $begingroup$
              I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
              $endgroup$
              – Maxim
              Dec 3 '18 at 16:07












            • $begingroup$
              $nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
              $endgroup$
              – TurlocTheRed
              Dec 4 '18 at 15:58












            • $begingroup$
              I asee what you mean about the norm. Corrected! Thanks!
              $endgroup$
              – TurlocTheRed
              Dec 4 '18 at 16:00


















            $begingroup$
            The norm of $n$ doesn't contain an $a b$ term.
            $endgroup$
            – Maxim
            Dec 2 '18 at 9:14




            $begingroup$
            The norm of $n$ doesn't contain an $a b$ term.
            $endgroup$
            – Maxim
            Dec 2 '18 at 9:14












            $begingroup$
            Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
            $endgroup$
            – TurlocTheRed
            Dec 3 '18 at 14:44




            $begingroup$
            Correct. I took r from r^3 and multiplied it with $hat{r}$, then dotted that with $hat{n}$ producing the result.
            $endgroup$
            – TurlocTheRed
            Dec 3 '18 at 14:44












            $begingroup$
            I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
            $endgroup$
            – Maxim
            Dec 3 '18 at 16:07






            $begingroup$
            I'm saying that if $mathbf n = (b cos theta, a sin theta)$, then $|mathbf n| = sqrt{b^2 cos^2 theta + a^2 sin^2 theta}$. Also, the divergence of $r^3/3 ,hat {mathbf r}$ is not $r^2$, it's $4 r^2/3$. And what is $dA$? Area element?
            $endgroup$
            – Maxim
            Dec 3 '18 at 16:07














            $begingroup$
            $nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
            $endgroup$
            – TurlocTheRed
            Dec 4 '18 at 15:58






            $begingroup$
            $nabla cdot vec{A}$ in cylindrical coordinates = $frac{partial A_r}{partial r}+frac{partial A_theta}{rpartial theta}+frac{partial A_z}{partial z}$ $vec{F}=r^3/3hat{r}$ So: $nabla cdot vec{F}=frac{partial(r^3/3)}{partial r}$ $nabla cdot vec{F}=r^2$
            $endgroup$
            – TurlocTheRed
            Dec 4 '18 at 15:58














            $begingroup$
            I asee what you mean about the norm. Corrected! Thanks!
            $endgroup$
            – TurlocTheRed
            Dec 4 '18 at 16:00






            $begingroup$
            I asee what you mean about the norm. Corrected! Thanks!
            $endgroup$
            – TurlocTheRed
            Dec 4 '18 at 16:00




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017365%2fverifying-greens-theorem-for-a-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

            ComboBox Display Member on multiple fields

            Is it possible to collect Nectar points via Trainline?