Evaluate $lim_{h rightarrow 0} {(x+h)^{99}-x^{99}over h}$












1












$begingroup$



$$lim_{h rightarrow 0} {(x+h)^{99}-x^{99}over h}$$




I need to factor this in order to get a limit.



I tried:



$$lim_{h rightarrow 0} {[(x+h)^{33}]^3-[(x)^{33}]^3over h}
\ lim_{h rightarrow 0} {[(x+h)^{33}-(x)^{33}][(x+h)^{66}+(x+h)^{33}(x)^{33}+(x)^{66}]over h}$$

However this does not seem helpful.



How do I approach this question?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you mean $h to 0$?
    $endgroup$
    – MisterRiemann
    Nov 26 '18 at 21:52










  • $begingroup$
    yes, thank you @MisterRiemann
    $endgroup$
    – didgocks
    Nov 26 '18 at 21:53










  • $begingroup$
    Hint: Limit definition of the derivative of $f(x)=x^{99}$.
    $endgroup$
    – Anurag A
    Nov 26 '18 at 21:53












  • $begingroup$
    Use the binomial theorem.
    $endgroup$
    – gammatester
    Nov 26 '18 at 21:54






  • 1




    $begingroup$
    The decomposition you show is not particularly helpful. Just apply the binomial theorem, and show that most of the terms disappear as $h$ goes to $0.$ Or, rewrite it saying $a=x+h, lim_limits{ato x} frac {a^{99} - x^{99}}{a-x}$ then factor $a^{99} - x^{99} = (a-x)(a^{98} + a^{97}x + cdots + x^{98})$ cancel the common factor and let $a = x$
    $endgroup$
    – Doug M
    Nov 26 '18 at 21:57


















1












$begingroup$



$$lim_{h rightarrow 0} {(x+h)^{99}-x^{99}over h}$$




I need to factor this in order to get a limit.



I tried:



$$lim_{h rightarrow 0} {[(x+h)^{33}]^3-[(x)^{33}]^3over h}
\ lim_{h rightarrow 0} {[(x+h)^{33}-(x)^{33}][(x+h)^{66}+(x+h)^{33}(x)^{33}+(x)^{66}]over h}$$

However this does not seem helpful.



How do I approach this question?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you mean $h to 0$?
    $endgroup$
    – MisterRiemann
    Nov 26 '18 at 21:52










  • $begingroup$
    yes, thank you @MisterRiemann
    $endgroup$
    – didgocks
    Nov 26 '18 at 21:53










  • $begingroup$
    Hint: Limit definition of the derivative of $f(x)=x^{99}$.
    $endgroup$
    – Anurag A
    Nov 26 '18 at 21:53












  • $begingroup$
    Use the binomial theorem.
    $endgroup$
    – gammatester
    Nov 26 '18 at 21:54






  • 1




    $begingroup$
    The decomposition you show is not particularly helpful. Just apply the binomial theorem, and show that most of the terms disappear as $h$ goes to $0.$ Or, rewrite it saying $a=x+h, lim_limits{ato x} frac {a^{99} - x^{99}}{a-x}$ then factor $a^{99} - x^{99} = (a-x)(a^{98} + a^{97}x + cdots + x^{98})$ cancel the common factor and let $a = x$
    $endgroup$
    – Doug M
    Nov 26 '18 at 21:57
















1












1








1





$begingroup$



$$lim_{h rightarrow 0} {(x+h)^{99}-x^{99}over h}$$




I need to factor this in order to get a limit.



I tried:



$$lim_{h rightarrow 0} {[(x+h)^{33}]^3-[(x)^{33}]^3over h}
\ lim_{h rightarrow 0} {[(x+h)^{33}-(x)^{33}][(x+h)^{66}+(x+h)^{33}(x)^{33}+(x)^{66}]over h}$$

However this does not seem helpful.



How do I approach this question?










share|cite|improve this question











$endgroup$





$$lim_{h rightarrow 0} {(x+h)^{99}-x^{99}over h}$$




I need to factor this in order to get a limit.



I tried:



$$lim_{h rightarrow 0} {[(x+h)^{33}]^3-[(x)^{33}]^3over h}
\ lim_{h rightarrow 0} {[(x+h)^{33}-(x)^{33}][(x+h)^{66}+(x+h)^{33}(x)^{33}+(x)^{66}]over h}$$

However this does not seem helpful.



How do I approach this question?







algebra-precalculus limits functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 27 '18 at 4:44









Paramanand Singh

49.6k556163




49.6k556163










asked Nov 26 '18 at 21:51









didgocksdidgocks

6801823




6801823












  • $begingroup$
    Do you mean $h to 0$?
    $endgroup$
    – MisterRiemann
    Nov 26 '18 at 21:52










  • $begingroup$
    yes, thank you @MisterRiemann
    $endgroup$
    – didgocks
    Nov 26 '18 at 21:53










  • $begingroup$
    Hint: Limit definition of the derivative of $f(x)=x^{99}$.
    $endgroup$
    – Anurag A
    Nov 26 '18 at 21:53












  • $begingroup$
    Use the binomial theorem.
    $endgroup$
    – gammatester
    Nov 26 '18 at 21:54






  • 1




    $begingroup$
    The decomposition you show is not particularly helpful. Just apply the binomial theorem, and show that most of the terms disappear as $h$ goes to $0.$ Or, rewrite it saying $a=x+h, lim_limits{ato x} frac {a^{99} - x^{99}}{a-x}$ then factor $a^{99} - x^{99} = (a-x)(a^{98} + a^{97}x + cdots + x^{98})$ cancel the common factor and let $a = x$
    $endgroup$
    – Doug M
    Nov 26 '18 at 21:57




















  • $begingroup$
    Do you mean $h to 0$?
    $endgroup$
    – MisterRiemann
    Nov 26 '18 at 21:52










  • $begingroup$
    yes, thank you @MisterRiemann
    $endgroup$
    – didgocks
    Nov 26 '18 at 21:53










  • $begingroup$
    Hint: Limit definition of the derivative of $f(x)=x^{99}$.
    $endgroup$
    – Anurag A
    Nov 26 '18 at 21:53












  • $begingroup$
    Use the binomial theorem.
    $endgroup$
    – gammatester
    Nov 26 '18 at 21:54






  • 1




    $begingroup$
    The decomposition you show is not particularly helpful. Just apply the binomial theorem, and show that most of the terms disappear as $h$ goes to $0.$ Or, rewrite it saying $a=x+h, lim_limits{ato x} frac {a^{99} - x^{99}}{a-x}$ then factor $a^{99} - x^{99} = (a-x)(a^{98} + a^{97}x + cdots + x^{98})$ cancel the common factor and let $a = x$
    $endgroup$
    – Doug M
    Nov 26 '18 at 21:57


















$begingroup$
Do you mean $h to 0$?
$endgroup$
– MisterRiemann
Nov 26 '18 at 21:52




$begingroup$
Do you mean $h to 0$?
$endgroup$
– MisterRiemann
Nov 26 '18 at 21:52












$begingroup$
yes, thank you @MisterRiemann
$endgroup$
– didgocks
Nov 26 '18 at 21:53




$begingroup$
yes, thank you @MisterRiemann
$endgroup$
– didgocks
Nov 26 '18 at 21:53












$begingroup$
Hint: Limit definition of the derivative of $f(x)=x^{99}$.
$endgroup$
– Anurag A
Nov 26 '18 at 21:53






$begingroup$
Hint: Limit definition of the derivative of $f(x)=x^{99}$.
$endgroup$
– Anurag A
Nov 26 '18 at 21:53














$begingroup$
Use the binomial theorem.
$endgroup$
– gammatester
Nov 26 '18 at 21:54




$begingroup$
Use the binomial theorem.
$endgroup$
– gammatester
Nov 26 '18 at 21:54




1




1




$begingroup$
The decomposition you show is not particularly helpful. Just apply the binomial theorem, and show that most of the terms disappear as $h$ goes to $0.$ Or, rewrite it saying $a=x+h, lim_limits{ato x} frac {a^{99} - x^{99}}{a-x}$ then factor $a^{99} - x^{99} = (a-x)(a^{98} + a^{97}x + cdots + x^{98})$ cancel the common factor and let $a = x$
$endgroup$
– Doug M
Nov 26 '18 at 21:57






$begingroup$
The decomposition you show is not particularly helpful. Just apply the binomial theorem, and show that most of the terms disappear as $h$ goes to $0.$ Or, rewrite it saying $a=x+h, lim_limits{ato x} frac {a^{99} - x^{99}}{a-x}$ then factor $a^{99} - x^{99} = (a-x)(a^{98} + a^{97}x + cdots + x^{98})$ cancel the common factor and let $a = x$
$endgroup$
– Doug M
Nov 26 '18 at 21:57












5 Answers
5






active

oldest

votes


















3












$begingroup$

If you're familiar with derivatives, then you can recall that
$$ f'(x) = lim_{hto 0} frac{f(x+h)-f(x)}{h} $$
and consider $f(x) = x^{99}$.



Otherwise, use the binomial theorem:
begin{align}frac{(x+h)^{99}-x^{99}}{h} &= frac{1}{h}left( sum_{k=0}^{99} binom{99}{k}x^{99-k}h^{k} - x^{99} right) = frac{1}{h}sum_{k=1}^{99}binom{99}{k}x^{99-k}h^{k}\&= binom{99}{1}x^{98} + sum_{k=2}^{99}binom{99}{k}x^{99-k}h^{k-1}
to 99x^{98}, quad text{as }hto 0.
end{align}






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    You made a typing mistake: It should be $f(x+h)-f(x)$, not $f(x+h)-f(h)$.
    $endgroup$
    – Martin Rosenau
    Nov 26 '18 at 21:58










  • $begingroup$
    @MartinRosenau Thanks!
    $endgroup$
    – MisterRiemann
    Nov 26 '18 at 21:58



















1












$begingroup$

Hint: That’s basically the derivative of $f(x) = x^{99}$.



$$lim_{h rightarrow 0} {(x+h)^{99}-x^{99}over h}$$



Recall that by Binomial Expansion,



$$(a+b)^n = sum_{r = 0}^{n} {n choose r}a^{n-r}b^r$$



So you get



$$lim_{h rightarrow 0} {color{blue}{{99 choose 0}x^{99}}+{99 choose 1}x^{98}h+{99 choose 2}x^{97}h^2+…+{99 choose n}h^{99}color{red}{-x^{99}}over h}$$



Cancel out the first and last terms. From here, notice if anything can be factored. Also, as another hint (for later simplifications), $${n choose r} = frac{n!}{r!{(n-r)!}}$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    The trick is to realise that $h to 0$ means $h$ is arbitrarily small so we can assume $h < 1$ and so $h > h^2 > h^3$ and that the "higher values of $h$" become "negligible"



    So you are thinking way too hard. Just use the binomial theorem to get $(x + h)^{99} = x^{99} + 99hx^{98} + sum_{k=2}^{99} {99 choose k} h^kx^{99-k}$ and hope that must of those higher values will become negligible.



    And indeed:



    $require{cancel}limlimits_{hto 0}frac {(x + h)^{99}-x^{99}}{h }=$



    $limlimits_{hto 0}frac {x^{99} + 99hx^{98} + (sum_{k=2}^{99} {99 choose k} h^kx^{99-k})-x^{99}}{h}=$



    $limlimits_{hto 0}frac {color{green}{cancel{x^{99}}} + 99color{red}{cancel h}x^{98} + (sum_{k=2}^{99} {99 choose k} h^{color{red}{cancel {k}}k-1}x^{99-k}) - color{green}{cancel{x^{99}}}}{color{red}{cancel h}}=$



    $limlimits_{hto 0}(99x^{98} + sum_{k=2}^{99} {99 choose k}h^{k-1}x^{99-k})=$



    $99x^{98} + sum_{k=2}^{99}{99 choose k}(limlimits_{hto 0} h^{k-1})x^{99-k}=$



    $99x^{98} + sum_{k=2}^{99}{99 choose k}(0)x^{99-k}=$



    $99x^{98} + sum_{k=2}^{99}0=$



    $99x^{98}$



    ======



    Doug M had an intriguing hint in the comments:



    Considering $a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b+ .... + ab^{n-2}+ b^{99})$ we get:



    $(x + h)^{99} - x^{99}=$



    $[(x+h) - x][(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]=$



    $h[(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]$



    And



    $[(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]=$



    $(x^{98} + text{a bunch of stuff with h as a factor})+(x^{97}cdot x + x(text{a bunch of stuff with h as a factor}))+... (xcdot x^{97} + x^{97}(text{a bunch of stuff with h as a factor})) + x^{98})=$



    $99x^{98} + text { a REALLY big bunch of stuff with h as a factor}$



    So $frac {(x+h)^{98} - x^{99}}h=$



    $frac {h(99x^{98}+ text { a REALLY big bunch of stuff with h as a factor}}h = $



    $99x^{98} + text { a REALLY big bunch of stuff with h as a factor}$



    ... and "$ text { a REALLY big bunch of stuff with h as a factor}$" goes to $0$ as .... it's a REALLY big bunch of stuff with $h$ as a factor.



    Okay, .... it was an intriguing idea and I'm glad I did it but.... I don't think it's a very practical way to do it.






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Hoping that you don't mind, I shall adopt and reuse the REALLY big bunch of stuff
      $endgroup$
      – Claude Leibovici
      Nov 27 '18 at 6:01



















    0












    $begingroup$

    Because both $limlimits_{hto 0}((x-h)^{99}-x^{99})=0$ and $limlimits_{hto 0}h=0$ you may also use L'Hospital's rule:



    $displaystylelimlimits_{hto 0}frac{(x-h)^{99}-x^{99}}{h}=displaystylelimlimits_{hto 0}frac{frac{d}{dh}((x-h)^{99}-x^{99})}{frac{d}{dh}h}=displaystylelimlimits_{hto 0}frac{99(x-h)^{98}-0}{1}=99x^{98}$






    share|cite|improve this answer









    $endgroup$









    • 1




      $begingroup$
      L'Hospital is far too complicated. If you know derivatives, you can use the definition in this case.
      $endgroup$
      – gammatester
      Nov 26 '18 at 22:05



















    0












    $begingroup$

    This limit is the derivative of $f(x)=x^{99}$. To get a generalization you can replace $99$ with $n$ where $n in mathbb{R}$. The limit thus translates to $displaystyle lim_{h to 0} frac{(x+h)^{n}-x^n}{h}$.



    Using Binomial Theorem, which states that $(a+b)^n=displaystyle sum_{k=0}^n {n choose k} a^{n-k} b^k$. Substituting $begin{pmatrix}a \ bend{pmatrix}=begin{pmatrix}x \ hend{pmatrix}$. $$(x+h)^n=x^n+{n choose 1}x^{n-1} h + {n choose 2} x^{n-2} h^2+ cdots +{n choose n-1}xh^{n-1}+h^n$$ Putting back this result in the expression for the limit. We get the following limit $$displaystyle lim_{h to 0} frac{(x+h)^n-x^n}{h}=displaystyle lim_{h to 0} Biggl(frac{1}{h}{n choose 1}x^{n-1}h+frac{1}{h}biggl(h^2biggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)biggr)Biggr)$$ $$=displaystyle lim_{h to 0} Biggl(biggl(nx^{n-1}biggr)+hbiggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)Biggr)$$ $$=displaystyle lim_{h to 0}nx^{n-1}+underbrace{displaystyle lim_{h to 0}hbiggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)}_{= 0}$$
    $$implies displaystyle lim_{h to 0}frac{(x+h)^n-x^n}{h}= nx^{n-1}$$
    Therefore, For $n=99$, the given limit evaluates to $99x^{98}$. Cheers






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014988%2fevaluate-lim-h-rightarrow-0-xh99-x99-over-h%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      5 Answers
      5






      active

      oldest

      votes








      5 Answers
      5






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      If you're familiar with derivatives, then you can recall that
      $$ f'(x) = lim_{hto 0} frac{f(x+h)-f(x)}{h} $$
      and consider $f(x) = x^{99}$.



      Otherwise, use the binomial theorem:
      begin{align}frac{(x+h)^{99}-x^{99}}{h} &= frac{1}{h}left( sum_{k=0}^{99} binom{99}{k}x^{99-k}h^{k} - x^{99} right) = frac{1}{h}sum_{k=1}^{99}binom{99}{k}x^{99-k}h^{k}\&= binom{99}{1}x^{98} + sum_{k=2}^{99}binom{99}{k}x^{99-k}h^{k-1}
      to 99x^{98}, quad text{as }hto 0.
      end{align}






      share|cite|improve this answer











      $endgroup$









      • 1




        $begingroup$
        You made a typing mistake: It should be $f(x+h)-f(x)$, not $f(x+h)-f(h)$.
        $endgroup$
        – Martin Rosenau
        Nov 26 '18 at 21:58










      • $begingroup$
        @MartinRosenau Thanks!
        $endgroup$
        – MisterRiemann
        Nov 26 '18 at 21:58
















      3












      $begingroup$

      If you're familiar with derivatives, then you can recall that
      $$ f'(x) = lim_{hto 0} frac{f(x+h)-f(x)}{h} $$
      and consider $f(x) = x^{99}$.



      Otherwise, use the binomial theorem:
      begin{align}frac{(x+h)^{99}-x^{99}}{h} &= frac{1}{h}left( sum_{k=0}^{99} binom{99}{k}x^{99-k}h^{k} - x^{99} right) = frac{1}{h}sum_{k=1}^{99}binom{99}{k}x^{99-k}h^{k}\&= binom{99}{1}x^{98} + sum_{k=2}^{99}binom{99}{k}x^{99-k}h^{k-1}
      to 99x^{98}, quad text{as }hto 0.
      end{align}






      share|cite|improve this answer











      $endgroup$









      • 1




        $begingroup$
        You made a typing mistake: It should be $f(x+h)-f(x)$, not $f(x+h)-f(h)$.
        $endgroup$
        – Martin Rosenau
        Nov 26 '18 at 21:58










      • $begingroup$
        @MartinRosenau Thanks!
        $endgroup$
        – MisterRiemann
        Nov 26 '18 at 21:58














      3












      3








      3





      $begingroup$

      If you're familiar with derivatives, then you can recall that
      $$ f'(x) = lim_{hto 0} frac{f(x+h)-f(x)}{h} $$
      and consider $f(x) = x^{99}$.



      Otherwise, use the binomial theorem:
      begin{align}frac{(x+h)^{99}-x^{99}}{h} &= frac{1}{h}left( sum_{k=0}^{99} binom{99}{k}x^{99-k}h^{k} - x^{99} right) = frac{1}{h}sum_{k=1}^{99}binom{99}{k}x^{99-k}h^{k}\&= binom{99}{1}x^{98} + sum_{k=2}^{99}binom{99}{k}x^{99-k}h^{k-1}
      to 99x^{98}, quad text{as }hto 0.
      end{align}






      share|cite|improve this answer











      $endgroup$



      If you're familiar with derivatives, then you can recall that
      $$ f'(x) = lim_{hto 0} frac{f(x+h)-f(x)}{h} $$
      and consider $f(x) = x^{99}$.



      Otherwise, use the binomial theorem:
      begin{align}frac{(x+h)^{99}-x^{99}}{h} &= frac{1}{h}left( sum_{k=0}^{99} binom{99}{k}x^{99-k}h^{k} - x^{99} right) = frac{1}{h}sum_{k=1}^{99}binom{99}{k}x^{99-k}h^{k}\&= binom{99}{1}x^{98} + sum_{k=2}^{99}binom{99}{k}x^{99-k}h^{k-1}
      to 99x^{98}, quad text{as }hto 0.
      end{align}







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Nov 26 '18 at 21:59

























      answered Nov 26 '18 at 21:57









      MisterRiemannMisterRiemann

      5,8451624




      5,8451624








      • 1




        $begingroup$
        You made a typing mistake: It should be $f(x+h)-f(x)$, not $f(x+h)-f(h)$.
        $endgroup$
        – Martin Rosenau
        Nov 26 '18 at 21:58










      • $begingroup$
        @MartinRosenau Thanks!
        $endgroup$
        – MisterRiemann
        Nov 26 '18 at 21:58














      • 1




        $begingroup$
        You made a typing mistake: It should be $f(x+h)-f(x)$, not $f(x+h)-f(h)$.
        $endgroup$
        – Martin Rosenau
        Nov 26 '18 at 21:58










      • $begingroup$
        @MartinRosenau Thanks!
        $endgroup$
        – MisterRiemann
        Nov 26 '18 at 21:58








      1




      1




      $begingroup$
      You made a typing mistake: It should be $f(x+h)-f(x)$, not $f(x+h)-f(h)$.
      $endgroup$
      – Martin Rosenau
      Nov 26 '18 at 21:58




      $begingroup$
      You made a typing mistake: It should be $f(x+h)-f(x)$, not $f(x+h)-f(h)$.
      $endgroup$
      – Martin Rosenau
      Nov 26 '18 at 21:58












      $begingroup$
      @MartinRosenau Thanks!
      $endgroup$
      – MisterRiemann
      Nov 26 '18 at 21:58




      $begingroup$
      @MartinRosenau Thanks!
      $endgroup$
      – MisterRiemann
      Nov 26 '18 at 21:58











      1












      $begingroup$

      Hint: That’s basically the derivative of $f(x) = x^{99}$.



      $$lim_{h rightarrow 0} {(x+h)^{99}-x^{99}over h}$$



      Recall that by Binomial Expansion,



      $$(a+b)^n = sum_{r = 0}^{n} {n choose r}a^{n-r}b^r$$



      So you get



      $$lim_{h rightarrow 0} {color{blue}{{99 choose 0}x^{99}}+{99 choose 1}x^{98}h+{99 choose 2}x^{97}h^2+…+{99 choose n}h^{99}color{red}{-x^{99}}over h}$$



      Cancel out the first and last terms. From here, notice if anything can be factored. Also, as another hint (for later simplifications), $${n choose r} = frac{n!}{r!{(n-r)!}}$$






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        Hint: That’s basically the derivative of $f(x) = x^{99}$.



        $$lim_{h rightarrow 0} {(x+h)^{99}-x^{99}over h}$$



        Recall that by Binomial Expansion,



        $$(a+b)^n = sum_{r = 0}^{n} {n choose r}a^{n-r}b^r$$



        So you get



        $$lim_{h rightarrow 0} {color{blue}{{99 choose 0}x^{99}}+{99 choose 1}x^{98}h+{99 choose 2}x^{97}h^2+…+{99 choose n}h^{99}color{red}{-x^{99}}over h}$$



        Cancel out the first and last terms. From here, notice if anything can be factored. Also, as another hint (for later simplifications), $${n choose r} = frac{n!}{r!{(n-r)!}}$$






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          Hint: That’s basically the derivative of $f(x) = x^{99}$.



          $$lim_{h rightarrow 0} {(x+h)^{99}-x^{99}over h}$$



          Recall that by Binomial Expansion,



          $$(a+b)^n = sum_{r = 0}^{n} {n choose r}a^{n-r}b^r$$



          So you get



          $$lim_{h rightarrow 0} {color{blue}{{99 choose 0}x^{99}}+{99 choose 1}x^{98}h+{99 choose 2}x^{97}h^2+…+{99 choose n}h^{99}color{red}{-x^{99}}over h}$$



          Cancel out the first and last terms. From here, notice if anything can be factored. Also, as another hint (for later simplifications), $${n choose r} = frac{n!}{r!{(n-r)!}}$$






          share|cite|improve this answer











          $endgroup$



          Hint: That’s basically the derivative of $f(x) = x^{99}$.



          $$lim_{h rightarrow 0} {(x+h)^{99}-x^{99}over h}$$



          Recall that by Binomial Expansion,



          $$(a+b)^n = sum_{r = 0}^{n} {n choose r}a^{n-r}b^r$$



          So you get



          $$lim_{h rightarrow 0} {color{blue}{{99 choose 0}x^{99}}+{99 choose 1}x^{98}h+{99 choose 2}x^{97}h^2+…+{99 choose n}h^{99}color{red}{-x^{99}}over h}$$



          Cancel out the first and last terms. From here, notice if anything can be factored. Also, as another hint (for later simplifications), $${n choose r} = frac{n!}{r!{(n-r)!}}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 26 '18 at 22:10

























          answered Nov 26 '18 at 22:05









          KM101KM101

          5,9281523




          5,9281523























              1












              $begingroup$

              The trick is to realise that $h to 0$ means $h$ is arbitrarily small so we can assume $h < 1$ and so $h > h^2 > h^3$ and that the "higher values of $h$" become "negligible"



              So you are thinking way too hard. Just use the binomial theorem to get $(x + h)^{99} = x^{99} + 99hx^{98} + sum_{k=2}^{99} {99 choose k} h^kx^{99-k}$ and hope that must of those higher values will become negligible.



              And indeed:



              $require{cancel}limlimits_{hto 0}frac {(x + h)^{99}-x^{99}}{h }=$



              $limlimits_{hto 0}frac {x^{99} + 99hx^{98} + (sum_{k=2}^{99} {99 choose k} h^kx^{99-k})-x^{99}}{h}=$



              $limlimits_{hto 0}frac {color{green}{cancel{x^{99}}} + 99color{red}{cancel h}x^{98} + (sum_{k=2}^{99} {99 choose k} h^{color{red}{cancel {k}}k-1}x^{99-k}) - color{green}{cancel{x^{99}}}}{color{red}{cancel h}}=$



              $limlimits_{hto 0}(99x^{98} + sum_{k=2}^{99} {99 choose k}h^{k-1}x^{99-k})=$



              $99x^{98} + sum_{k=2}^{99}{99 choose k}(limlimits_{hto 0} h^{k-1})x^{99-k}=$



              $99x^{98} + sum_{k=2}^{99}{99 choose k}(0)x^{99-k}=$



              $99x^{98} + sum_{k=2}^{99}0=$



              $99x^{98}$



              ======



              Doug M had an intriguing hint in the comments:



              Considering $a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b+ .... + ab^{n-2}+ b^{99})$ we get:



              $(x + h)^{99} - x^{99}=$



              $[(x+h) - x][(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]=$



              $h[(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]$



              And



              $[(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]=$



              $(x^{98} + text{a bunch of stuff with h as a factor})+(x^{97}cdot x + x(text{a bunch of stuff with h as a factor}))+... (xcdot x^{97} + x^{97}(text{a bunch of stuff with h as a factor})) + x^{98})=$



              $99x^{98} + text { a REALLY big bunch of stuff with h as a factor}$



              So $frac {(x+h)^{98} - x^{99}}h=$



              $frac {h(99x^{98}+ text { a REALLY big bunch of stuff with h as a factor}}h = $



              $99x^{98} + text { a REALLY big bunch of stuff with h as a factor}$



              ... and "$ text { a REALLY big bunch of stuff with h as a factor}$" goes to $0$ as .... it's a REALLY big bunch of stuff with $h$ as a factor.



              Okay, .... it was an intriguing idea and I'm glad I did it but.... I don't think it's a very practical way to do it.






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                Hoping that you don't mind, I shall adopt and reuse the REALLY big bunch of stuff
                $endgroup$
                – Claude Leibovici
                Nov 27 '18 at 6:01
















              1












              $begingroup$

              The trick is to realise that $h to 0$ means $h$ is arbitrarily small so we can assume $h < 1$ and so $h > h^2 > h^3$ and that the "higher values of $h$" become "negligible"



              So you are thinking way too hard. Just use the binomial theorem to get $(x + h)^{99} = x^{99} + 99hx^{98} + sum_{k=2}^{99} {99 choose k} h^kx^{99-k}$ and hope that must of those higher values will become negligible.



              And indeed:



              $require{cancel}limlimits_{hto 0}frac {(x + h)^{99}-x^{99}}{h }=$



              $limlimits_{hto 0}frac {x^{99} + 99hx^{98} + (sum_{k=2}^{99} {99 choose k} h^kx^{99-k})-x^{99}}{h}=$



              $limlimits_{hto 0}frac {color{green}{cancel{x^{99}}} + 99color{red}{cancel h}x^{98} + (sum_{k=2}^{99} {99 choose k} h^{color{red}{cancel {k}}k-1}x^{99-k}) - color{green}{cancel{x^{99}}}}{color{red}{cancel h}}=$



              $limlimits_{hto 0}(99x^{98} + sum_{k=2}^{99} {99 choose k}h^{k-1}x^{99-k})=$



              $99x^{98} + sum_{k=2}^{99}{99 choose k}(limlimits_{hto 0} h^{k-1})x^{99-k}=$



              $99x^{98} + sum_{k=2}^{99}{99 choose k}(0)x^{99-k}=$



              $99x^{98} + sum_{k=2}^{99}0=$



              $99x^{98}$



              ======



              Doug M had an intriguing hint in the comments:



              Considering $a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b+ .... + ab^{n-2}+ b^{99})$ we get:



              $(x + h)^{99} - x^{99}=$



              $[(x+h) - x][(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]=$



              $h[(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]$



              And



              $[(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]=$



              $(x^{98} + text{a bunch of stuff with h as a factor})+(x^{97}cdot x + x(text{a bunch of stuff with h as a factor}))+... (xcdot x^{97} + x^{97}(text{a bunch of stuff with h as a factor})) + x^{98})=$



              $99x^{98} + text { a REALLY big bunch of stuff with h as a factor}$



              So $frac {(x+h)^{98} - x^{99}}h=$



              $frac {h(99x^{98}+ text { a REALLY big bunch of stuff with h as a factor}}h = $



              $99x^{98} + text { a REALLY big bunch of stuff with h as a factor}$



              ... and "$ text { a REALLY big bunch of stuff with h as a factor}$" goes to $0$ as .... it's a REALLY big bunch of stuff with $h$ as a factor.



              Okay, .... it was an intriguing idea and I'm glad I did it but.... I don't think it's a very practical way to do it.






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                Hoping that you don't mind, I shall adopt and reuse the REALLY big bunch of stuff
                $endgroup$
                – Claude Leibovici
                Nov 27 '18 at 6:01














              1












              1








              1





              $begingroup$

              The trick is to realise that $h to 0$ means $h$ is arbitrarily small so we can assume $h < 1$ and so $h > h^2 > h^3$ and that the "higher values of $h$" become "negligible"



              So you are thinking way too hard. Just use the binomial theorem to get $(x + h)^{99} = x^{99} + 99hx^{98} + sum_{k=2}^{99} {99 choose k} h^kx^{99-k}$ and hope that must of those higher values will become negligible.



              And indeed:



              $require{cancel}limlimits_{hto 0}frac {(x + h)^{99}-x^{99}}{h }=$



              $limlimits_{hto 0}frac {x^{99} + 99hx^{98} + (sum_{k=2}^{99} {99 choose k} h^kx^{99-k})-x^{99}}{h}=$



              $limlimits_{hto 0}frac {color{green}{cancel{x^{99}}} + 99color{red}{cancel h}x^{98} + (sum_{k=2}^{99} {99 choose k} h^{color{red}{cancel {k}}k-1}x^{99-k}) - color{green}{cancel{x^{99}}}}{color{red}{cancel h}}=$



              $limlimits_{hto 0}(99x^{98} + sum_{k=2}^{99} {99 choose k}h^{k-1}x^{99-k})=$



              $99x^{98} + sum_{k=2}^{99}{99 choose k}(limlimits_{hto 0} h^{k-1})x^{99-k}=$



              $99x^{98} + sum_{k=2}^{99}{99 choose k}(0)x^{99-k}=$



              $99x^{98} + sum_{k=2}^{99}0=$



              $99x^{98}$



              ======



              Doug M had an intriguing hint in the comments:



              Considering $a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b+ .... + ab^{n-2}+ b^{99})$ we get:



              $(x + h)^{99} - x^{99}=$



              $[(x+h) - x][(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]=$



              $h[(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]$



              And



              $[(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]=$



              $(x^{98} + text{a bunch of stuff with h as a factor})+(x^{97}cdot x + x(text{a bunch of stuff with h as a factor}))+... (xcdot x^{97} + x^{97}(text{a bunch of stuff with h as a factor})) + x^{98})=$



              $99x^{98} + text { a REALLY big bunch of stuff with h as a factor}$



              So $frac {(x+h)^{98} - x^{99}}h=$



              $frac {h(99x^{98}+ text { a REALLY big bunch of stuff with h as a factor}}h = $



              $99x^{98} + text { a REALLY big bunch of stuff with h as a factor}$



              ... and "$ text { a REALLY big bunch of stuff with h as a factor}$" goes to $0$ as .... it's a REALLY big bunch of stuff with $h$ as a factor.



              Okay, .... it was an intriguing idea and I'm glad I did it but.... I don't think it's a very practical way to do it.






              share|cite|improve this answer











              $endgroup$



              The trick is to realise that $h to 0$ means $h$ is arbitrarily small so we can assume $h < 1$ and so $h > h^2 > h^3$ and that the "higher values of $h$" become "negligible"



              So you are thinking way too hard. Just use the binomial theorem to get $(x + h)^{99} = x^{99} + 99hx^{98} + sum_{k=2}^{99} {99 choose k} h^kx^{99-k}$ and hope that must of those higher values will become negligible.



              And indeed:



              $require{cancel}limlimits_{hto 0}frac {(x + h)^{99}-x^{99}}{h }=$



              $limlimits_{hto 0}frac {x^{99} + 99hx^{98} + (sum_{k=2}^{99} {99 choose k} h^kx^{99-k})-x^{99}}{h}=$



              $limlimits_{hto 0}frac {color{green}{cancel{x^{99}}} + 99color{red}{cancel h}x^{98} + (sum_{k=2}^{99} {99 choose k} h^{color{red}{cancel {k}}k-1}x^{99-k}) - color{green}{cancel{x^{99}}}}{color{red}{cancel h}}=$



              $limlimits_{hto 0}(99x^{98} + sum_{k=2}^{99} {99 choose k}h^{k-1}x^{99-k})=$



              $99x^{98} + sum_{k=2}^{99}{99 choose k}(limlimits_{hto 0} h^{k-1})x^{99-k}=$



              $99x^{98} + sum_{k=2}^{99}{99 choose k}(0)x^{99-k}=$



              $99x^{98} + sum_{k=2}^{99}0=$



              $99x^{98}$



              ======



              Doug M had an intriguing hint in the comments:



              Considering $a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b+ .... + ab^{n-2}+ b^{99})$ we get:



              $(x + h)^{99} - x^{99}=$



              $[(x+h) - x][(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]=$



              $h[(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]$



              And



              $[(x+h)^{98} + (x+h)^{97}x + ... + (x+h)x^{97} + x^{98}]=$



              $(x^{98} + text{a bunch of stuff with h as a factor})+(x^{97}cdot x + x(text{a bunch of stuff with h as a factor}))+... (xcdot x^{97} + x^{97}(text{a bunch of stuff with h as a factor})) + x^{98})=$



              $99x^{98} + text { a REALLY big bunch of stuff with h as a factor}$



              So $frac {(x+h)^{98} - x^{99}}h=$



              $frac {h(99x^{98}+ text { a REALLY big bunch of stuff with h as a factor}}h = $



              $99x^{98} + text { a REALLY big bunch of stuff with h as a factor}$



              ... and "$ text { a REALLY big bunch of stuff with h as a factor}$" goes to $0$ as .... it's a REALLY big bunch of stuff with $h$ as a factor.



              Okay, .... it was an intriguing idea and I'm glad I did it but.... I don't think it's a very practical way to do it.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Nov 26 '18 at 23:12

























              answered Nov 26 '18 at 22:53









              fleabloodfleablood

              69.3k22685




              69.3k22685








              • 1




                $begingroup$
                Hoping that you don't mind, I shall adopt and reuse the REALLY big bunch of stuff
                $endgroup$
                – Claude Leibovici
                Nov 27 '18 at 6:01














              • 1




                $begingroup$
                Hoping that you don't mind, I shall adopt and reuse the REALLY big bunch of stuff
                $endgroup$
                – Claude Leibovici
                Nov 27 '18 at 6:01








              1




              1




              $begingroup$
              Hoping that you don't mind, I shall adopt and reuse the REALLY big bunch of stuff
              $endgroup$
              – Claude Leibovici
              Nov 27 '18 at 6:01




              $begingroup$
              Hoping that you don't mind, I shall adopt and reuse the REALLY big bunch of stuff
              $endgroup$
              – Claude Leibovici
              Nov 27 '18 at 6:01











              0












              $begingroup$

              Because both $limlimits_{hto 0}((x-h)^{99}-x^{99})=0$ and $limlimits_{hto 0}h=0$ you may also use L'Hospital's rule:



              $displaystylelimlimits_{hto 0}frac{(x-h)^{99}-x^{99}}{h}=displaystylelimlimits_{hto 0}frac{frac{d}{dh}((x-h)^{99}-x^{99})}{frac{d}{dh}h}=displaystylelimlimits_{hto 0}frac{99(x-h)^{98}-0}{1}=99x^{98}$






              share|cite|improve this answer









              $endgroup$









              • 1




                $begingroup$
                L'Hospital is far too complicated. If you know derivatives, you can use the definition in this case.
                $endgroup$
                – gammatester
                Nov 26 '18 at 22:05
















              0












              $begingroup$

              Because both $limlimits_{hto 0}((x-h)^{99}-x^{99})=0$ and $limlimits_{hto 0}h=0$ you may also use L'Hospital's rule:



              $displaystylelimlimits_{hto 0}frac{(x-h)^{99}-x^{99}}{h}=displaystylelimlimits_{hto 0}frac{frac{d}{dh}((x-h)^{99}-x^{99})}{frac{d}{dh}h}=displaystylelimlimits_{hto 0}frac{99(x-h)^{98}-0}{1}=99x^{98}$






              share|cite|improve this answer









              $endgroup$









              • 1




                $begingroup$
                L'Hospital is far too complicated. If you know derivatives, you can use the definition in this case.
                $endgroup$
                – gammatester
                Nov 26 '18 at 22:05














              0












              0








              0





              $begingroup$

              Because both $limlimits_{hto 0}((x-h)^{99}-x^{99})=0$ and $limlimits_{hto 0}h=0$ you may also use L'Hospital's rule:



              $displaystylelimlimits_{hto 0}frac{(x-h)^{99}-x^{99}}{h}=displaystylelimlimits_{hto 0}frac{frac{d}{dh}((x-h)^{99}-x^{99})}{frac{d}{dh}h}=displaystylelimlimits_{hto 0}frac{99(x-h)^{98}-0}{1}=99x^{98}$






              share|cite|improve this answer









              $endgroup$



              Because both $limlimits_{hto 0}((x-h)^{99}-x^{99})=0$ and $limlimits_{hto 0}h=0$ you may also use L'Hospital's rule:



              $displaystylelimlimits_{hto 0}frac{(x-h)^{99}-x^{99}}{h}=displaystylelimlimits_{hto 0}frac{frac{d}{dh}((x-h)^{99}-x^{99})}{frac{d}{dh}h}=displaystylelimlimits_{hto 0}frac{99(x-h)^{98}-0}{1}=99x^{98}$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Nov 26 '18 at 22:03









              Martin RosenauMartin Rosenau

              1,156139




              1,156139








              • 1




                $begingroup$
                L'Hospital is far too complicated. If you know derivatives, you can use the definition in this case.
                $endgroup$
                – gammatester
                Nov 26 '18 at 22:05














              • 1




                $begingroup$
                L'Hospital is far too complicated. If you know derivatives, you can use the definition in this case.
                $endgroup$
                – gammatester
                Nov 26 '18 at 22:05








              1




              1




              $begingroup$
              L'Hospital is far too complicated. If you know derivatives, you can use the definition in this case.
              $endgroup$
              – gammatester
              Nov 26 '18 at 22:05




              $begingroup$
              L'Hospital is far too complicated. If you know derivatives, you can use the definition in this case.
              $endgroup$
              – gammatester
              Nov 26 '18 at 22:05











              0












              $begingroup$

              This limit is the derivative of $f(x)=x^{99}$. To get a generalization you can replace $99$ with $n$ where $n in mathbb{R}$. The limit thus translates to $displaystyle lim_{h to 0} frac{(x+h)^{n}-x^n}{h}$.



              Using Binomial Theorem, which states that $(a+b)^n=displaystyle sum_{k=0}^n {n choose k} a^{n-k} b^k$. Substituting $begin{pmatrix}a \ bend{pmatrix}=begin{pmatrix}x \ hend{pmatrix}$. $$(x+h)^n=x^n+{n choose 1}x^{n-1} h + {n choose 2} x^{n-2} h^2+ cdots +{n choose n-1}xh^{n-1}+h^n$$ Putting back this result in the expression for the limit. We get the following limit $$displaystyle lim_{h to 0} frac{(x+h)^n-x^n}{h}=displaystyle lim_{h to 0} Biggl(frac{1}{h}{n choose 1}x^{n-1}h+frac{1}{h}biggl(h^2biggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)biggr)Biggr)$$ $$=displaystyle lim_{h to 0} Biggl(biggl(nx^{n-1}biggr)+hbiggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)Biggr)$$ $$=displaystyle lim_{h to 0}nx^{n-1}+underbrace{displaystyle lim_{h to 0}hbiggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)}_{= 0}$$
              $$implies displaystyle lim_{h to 0}frac{(x+h)^n-x^n}{h}= nx^{n-1}$$
              Therefore, For $n=99$, the given limit evaluates to $99x^{98}$. Cheers






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                This limit is the derivative of $f(x)=x^{99}$. To get a generalization you can replace $99$ with $n$ where $n in mathbb{R}$. The limit thus translates to $displaystyle lim_{h to 0} frac{(x+h)^{n}-x^n}{h}$.



                Using Binomial Theorem, which states that $(a+b)^n=displaystyle sum_{k=0}^n {n choose k} a^{n-k} b^k$. Substituting $begin{pmatrix}a \ bend{pmatrix}=begin{pmatrix}x \ hend{pmatrix}$. $$(x+h)^n=x^n+{n choose 1}x^{n-1} h + {n choose 2} x^{n-2} h^2+ cdots +{n choose n-1}xh^{n-1}+h^n$$ Putting back this result in the expression for the limit. We get the following limit $$displaystyle lim_{h to 0} frac{(x+h)^n-x^n}{h}=displaystyle lim_{h to 0} Biggl(frac{1}{h}{n choose 1}x^{n-1}h+frac{1}{h}biggl(h^2biggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)biggr)Biggr)$$ $$=displaystyle lim_{h to 0} Biggl(biggl(nx^{n-1}biggr)+hbiggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)Biggr)$$ $$=displaystyle lim_{h to 0}nx^{n-1}+underbrace{displaystyle lim_{h to 0}hbiggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)}_{= 0}$$
                $$implies displaystyle lim_{h to 0}frac{(x+h)^n-x^n}{h}= nx^{n-1}$$
                Therefore, For $n=99$, the given limit evaluates to $99x^{98}$. Cheers






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  This limit is the derivative of $f(x)=x^{99}$. To get a generalization you can replace $99$ with $n$ where $n in mathbb{R}$. The limit thus translates to $displaystyle lim_{h to 0} frac{(x+h)^{n}-x^n}{h}$.



                  Using Binomial Theorem, which states that $(a+b)^n=displaystyle sum_{k=0}^n {n choose k} a^{n-k} b^k$. Substituting $begin{pmatrix}a \ bend{pmatrix}=begin{pmatrix}x \ hend{pmatrix}$. $$(x+h)^n=x^n+{n choose 1}x^{n-1} h + {n choose 2} x^{n-2} h^2+ cdots +{n choose n-1}xh^{n-1}+h^n$$ Putting back this result in the expression for the limit. We get the following limit $$displaystyle lim_{h to 0} frac{(x+h)^n-x^n}{h}=displaystyle lim_{h to 0} Biggl(frac{1}{h}{n choose 1}x^{n-1}h+frac{1}{h}biggl(h^2biggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)biggr)Biggr)$$ $$=displaystyle lim_{h to 0} Biggl(biggl(nx^{n-1}biggr)+hbiggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)Biggr)$$ $$=displaystyle lim_{h to 0}nx^{n-1}+underbrace{displaystyle lim_{h to 0}hbiggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)}_{= 0}$$
                  $$implies displaystyle lim_{h to 0}frac{(x+h)^n-x^n}{h}= nx^{n-1}$$
                  Therefore, For $n=99$, the given limit evaluates to $99x^{98}$. Cheers






                  share|cite|improve this answer









                  $endgroup$



                  This limit is the derivative of $f(x)=x^{99}$. To get a generalization you can replace $99$ with $n$ where $n in mathbb{R}$. The limit thus translates to $displaystyle lim_{h to 0} frac{(x+h)^{n}-x^n}{h}$.



                  Using Binomial Theorem, which states that $(a+b)^n=displaystyle sum_{k=0}^n {n choose k} a^{n-k} b^k$. Substituting $begin{pmatrix}a \ bend{pmatrix}=begin{pmatrix}x \ hend{pmatrix}$. $$(x+h)^n=x^n+{n choose 1}x^{n-1} h + {n choose 2} x^{n-2} h^2+ cdots +{n choose n-1}xh^{n-1}+h^n$$ Putting back this result in the expression for the limit. We get the following limit $$displaystyle lim_{h to 0} frac{(x+h)^n-x^n}{h}=displaystyle lim_{h to 0} Biggl(frac{1}{h}{n choose 1}x^{n-1}h+frac{1}{h}biggl(h^2biggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)biggr)Biggr)$$ $$=displaystyle lim_{h to 0} Biggl(biggl(nx^{n-1}biggr)+hbiggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)Biggr)$$ $$=displaystyle lim_{h to 0}nx^{n-1}+underbrace{displaystyle lim_{h to 0}hbiggl({n choose 2}x^{n-2}+{n choose 3}x^{n-3}h+cdots+h^{n-2}biggr)}_{= 0}$$
                  $$implies displaystyle lim_{h to 0}frac{(x+h)^n-x^n}{h}= nx^{n-1}$$
                  Therefore, For $n=99$, the given limit evaluates to $99x^{98}$. Cheers







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 28 '18 at 8:18









                  Paras KhoslaParas Khosla

                  8610




                  8610






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014988%2fevaluate-lim-h-rightarrow-0-xh99-x99-over-h%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                      ComboBox Display Member on multiple fields

                      Is it possible to collect Nectar points via Trainline?