Prove $lim_{nrightarrowinfty}(1+frac{a}{n}+frac{b}{n^2})^n=lim_{nrightarrowinfty}(1+frac{a}{n})^n$ using...











up vote
3
down vote

favorite












The title says it all, thanks in advance. I just cannot see how to solve this using binomial theorem, maybe use it twice?










share|cite|improve this question




























    up vote
    3
    down vote

    favorite












    The title says it all, thanks in advance. I just cannot see how to solve this using binomial theorem, maybe use it twice?










    share|cite|improve this question


























      up vote
      3
      down vote

      favorite









      up vote
      3
      down vote

      favorite











      The title says it all, thanks in advance. I just cannot see how to solve this using binomial theorem, maybe use it twice?










      share|cite|improve this question















      The title says it all, thanks in advance. I just cannot see how to solve this using binomial theorem, maybe use it twice?







      calculus sequences-and-series limits exponential-function






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 14 at 16:39









      Yiorgos S. Smyrlis

      61.7k1383161




      61.7k1383161










      asked Nov 14 at 6:25









      The R

      516




      516






















          4 Answers
          4






          active

          oldest

          votes

















          up vote
          4
          down vote



          accepted










          Let $a, b in mathbb{C}$. We begin with the identity



          $$ frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n}
          = left( 1 + frac{b}{n(n + a)} right)^n. $$



          Now let $n > |a|+|b| $. Then by the binomial theorem, together with the simple estimate $binom{n}{k} leq n^k$,



          begin{align*}
          left| frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} - 1 right|
          &= left| sum_{k=1}^{n} binom{n}{k} frac{b^k}{n^k(n + a)^k} right| \
          &leq sum_{k=1}^{n} binom{n}{k} frac{|b|^k}{n^k(n - |a|)^k} \
          &leq sum_{k=1}^{n} frac{|b|^k}{(n - |a|)^k} \
          &leq frac{|b|}{n - |a| - |b|},
          end{align*}



          which converges to $0$ as $ntoinfty$. Therefore



          $$ lim_{ntoinfty} frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} = 1, $$



          and the desired conclusion follows by assuming that we know the limit $lim left(1 + frac{a}{n} right)^n$ exists in $mathbb{C}setminus{0}$.






          share|cite|improve this answer




























            up vote
            3
            down vote













            If you are assuming that the limits exists then you can argue as follows: $(1+frac a n +frac b {n^{2}})^{n}-(1+frac a n )^{n}= sum_{j=0}^{n-1} binom {n} {j}(1+frac a n )^{l}(frac b {n^{2}})^{n-j}$. Note that $|(frac b {n^{2}})^{n-j}| leq frac {|b|} {n^{2}}$ as long as $frac {|b|} {n^{2}} <1$. The remaining sum is bounded by $(2+frac {|a|} n)^{n}$ which is bounded.






            share|cite|improve this answer




























              up vote
              3
              down vote













              Let us first assume that $a,bge 0$. (The remaining cases $a<0$ can be treated analogously.)



              Using the fact that
              $$
              s=lim_{ntoinfty}left(1+frac{a}{n}right)^nin (0,infty),
              $$

              we obtain that
              $$
              1le frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}leleft(1+frac{b}{n^2}right)^n= left(Big(1+frac{b}{n^2}Big)^{n^2}right)^{1/n}to 1
              $$

              and hence
              $$
              lim_{ntoinfty}frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}=1.
              $$






              share|cite|improve this answer























              • Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
                – Peter Szilas
                Nov 14 at 7:19


















              up vote
              2
              down vote













              Let $n^2+an+b=(n+p)(n+q)implies p+q=a, pq=b$



              $$lim_{ntoinfty}left(1+dfrac{an+b}{n^2}right)^n=lim_{ntoinfty}left(1+dfrac pnright)^nlim_{ntoinfty}left(1+dfrac qnright)^n=e^{p+q}=e^a$$



              Now $left(1+dfrac anright)^n=?$






              share|cite|improve this answer





















                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                 

                draft saved


                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997875%2fprove-lim-n-rightarrow-infty1-fracan-fracbn2n-lim-n-rightarr%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes








                up vote
                4
                down vote



                accepted










                Let $a, b in mathbb{C}$. We begin with the identity



                $$ frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n}
                = left( 1 + frac{b}{n(n + a)} right)^n. $$



                Now let $n > |a|+|b| $. Then by the binomial theorem, together with the simple estimate $binom{n}{k} leq n^k$,



                begin{align*}
                left| frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} - 1 right|
                &= left| sum_{k=1}^{n} binom{n}{k} frac{b^k}{n^k(n + a)^k} right| \
                &leq sum_{k=1}^{n} binom{n}{k} frac{|b|^k}{n^k(n - |a|)^k} \
                &leq sum_{k=1}^{n} frac{|b|^k}{(n - |a|)^k} \
                &leq frac{|b|}{n - |a| - |b|},
                end{align*}



                which converges to $0$ as $ntoinfty$. Therefore



                $$ lim_{ntoinfty} frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} = 1, $$



                and the desired conclusion follows by assuming that we know the limit $lim left(1 + frac{a}{n} right)^n$ exists in $mathbb{C}setminus{0}$.






                share|cite|improve this answer

























                  up vote
                  4
                  down vote



                  accepted










                  Let $a, b in mathbb{C}$. We begin with the identity



                  $$ frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n}
                  = left( 1 + frac{b}{n(n + a)} right)^n. $$



                  Now let $n > |a|+|b| $. Then by the binomial theorem, together with the simple estimate $binom{n}{k} leq n^k$,



                  begin{align*}
                  left| frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} - 1 right|
                  &= left| sum_{k=1}^{n} binom{n}{k} frac{b^k}{n^k(n + a)^k} right| \
                  &leq sum_{k=1}^{n} binom{n}{k} frac{|b|^k}{n^k(n - |a|)^k} \
                  &leq sum_{k=1}^{n} frac{|b|^k}{(n - |a|)^k} \
                  &leq frac{|b|}{n - |a| - |b|},
                  end{align*}



                  which converges to $0$ as $ntoinfty$. Therefore



                  $$ lim_{ntoinfty} frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} = 1, $$



                  and the desired conclusion follows by assuming that we know the limit $lim left(1 + frac{a}{n} right)^n$ exists in $mathbb{C}setminus{0}$.






                  share|cite|improve this answer























                    up vote
                    4
                    down vote



                    accepted







                    up vote
                    4
                    down vote



                    accepted






                    Let $a, b in mathbb{C}$. We begin with the identity



                    $$ frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n}
                    = left( 1 + frac{b}{n(n + a)} right)^n. $$



                    Now let $n > |a|+|b| $. Then by the binomial theorem, together with the simple estimate $binom{n}{k} leq n^k$,



                    begin{align*}
                    left| frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} - 1 right|
                    &= left| sum_{k=1}^{n} binom{n}{k} frac{b^k}{n^k(n + a)^k} right| \
                    &leq sum_{k=1}^{n} binom{n}{k} frac{|b|^k}{n^k(n - |a|)^k} \
                    &leq sum_{k=1}^{n} frac{|b|^k}{(n - |a|)^k} \
                    &leq frac{|b|}{n - |a| - |b|},
                    end{align*}



                    which converges to $0$ as $ntoinfty$. Therefore



                    $$ lim_{ntoinfty} frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} = 1, $$



                    and the desired conclusion follows by assuming that we know the limit $lim left(1 + frac{a}{n} right)^n$ exists in $mathbb{C}setminus{0}$.






                    share|cite|improve this answer












                    Let $a, b in mathbb{C}$. We begin with the identity



                    $$ frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n}
                    = left( 1 + frac{b}{n(n + a)} right)^n. $$



                    Now let $n > |a|+|b| $. Then by the binomial theorem, together with the simple estimate $binom{n}{k} leq n^k$,



                    begin{align*}
                    left| frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} - 1 right|
                    &= left| sum_{k=1}^{n} binom{n}{k} frac{b^k}{n^k(n + a)^k} right| \
                    &leq sum_{k=1}^{n} binom{n}{k} frac{|b|^k}{n^k(n - |a|)^k} \
                    &leq sum_{k=1}^{n} frac{|b|^k}{(n - |a|)^k} \
                    &leq frac{|b|}{n - |a| - |b|},
                    end{align*}



                    which converges to $0$ as $ntoinfty$. Therefore



                    $$ lim_{ntoinfty} frac{left( 1 + frac{a}{n} + frac{b}{n^2} right)^n}{left(1 + frac{a}{n} right)^n} = 1, $$



                    and the desired conclusion follows by assuming that we know the limit $lim left(1 + frac{a}{n} right)^n$ exists in $mathbb{C}setminus{0}$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 14 at 6:42









                    Sangchul Lee

                    89.9k12162262




                    89.9k12162262






















                        up vote
                        3
                        down vote













                        If you are assuming that the limits exists then you can argue as follows: $(1+frac a n +frac b {n^{2}})^{n}-(1+frac a n )^{n}= sum_{j=0}^{n-1} binom {n} {j}(1+frac a n )^{l}(frac b {n^{2}})^{n-j}$. Note that $|(frac b {n^{2}})^{n-j}| leq frac {|b|} {n^{2}}$ as long as $frac {|b|} {n^{2}} <1$. The remaining sum is bounded by $(2+frac {|a|} n)^{n}$ which is bounded.






                        share|cite|improve this answer

























                          up vote
                          3
                          down vote













                          If you are assuming that the limits exists then you can argue as follows: $(1+frac a n +frac b {n^{2}})^{n}-(1+frac a n )^{n}= sum_{j=0}^{n-1} binom {n} {j}(1+frac a n )^{l}(frac b {n^{2}})^{n-j}$. Note that $|(frac b {n^{2}})^{n-j}| leq frac {|b|} {n^{2}}$ as long as $frac {|b|} {n^{2}} <1$. The remaining sum is bounded by $(2+frac {|a|} n)^{n}$ which is bounded.






                          share|cite|improve this answer























                            up vote
                            3
                            down vote










                            up vote
                            3
                            down vote









                            If you are assuming that the limits exists then you can argue as follows: $(1+frac a n +frac b {n^{2}})^{n}-(1+frac a n )^{n}= sum_{j=0}^{n-1} binom {n} {j}(1+frac a n )^{l}(frac b {n^{2}})^{n-j}$. Note that $|(frac b {n^{2}})^{n-j}| leq frac {|b|} {n^{2}}$ as long as $frac {|b|} {n^{2}} <1$. The remaining sum is bounded by $(2+frac {|a|} n)^{n}$ which is bounded.






                            share|cite|improve this answer












                            If you are assuming that the limits exists then you can argue as follows: $(1+frac a n +frac b {n^{2}})^{n}-(1+frac a n )^{n}= sum_{j=0}^{n-1} binom {n} {j}(1+frac a n )^{l}(frac b {n^{2}})^{n-j}$. Note that $|(frac b {n^{2}})^{n-j}| leq frac {|b|} {n^{2}}$ as long as $frac {|b|} {n^{2}} <1$. The remaining sum is bounded by $(2+frac {|a|} n)^{n}$ which is bounded.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 14 at 6:39









                            Kavi Rama Murthy

                            41.8k31751




                            41.8k31751






















                                up vote
                                3
                                down vote













                                Let us first assume that $a,bge 0$. (The remaining cases $a<0$ can be treated analogously.)



                                Using the fact that
                                $$
                                s=lim_{ntoinfty}left(1+frac{a}{n}right)^nin (0,infty),
                                $$

                                we obtain that
                                $$
                                1le frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}leleft(1+frac{b}{n^2}right)^n= left(Big(1+frac{b}{n^2}Big)^{n^2}right)^{1/n}to 1
                                $$

                                and hence
                                $$
                                lim_{ntoinfty}frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}=1.
                                $$






                                share|cite|improve this answer























                                • Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
                                  – Peter Szilas
                                  Nov 14 at 7:19















                                up vote
                                3
                                down vote













                                Let us first assume that $a,bge 0$. (The remaining cases $a<0$ can be treated analogously.)



                                Using the fact that
                                $$
                                s=lim_{ntoinfty}left(1+frac{a}{n}right)^nin (0,infty),
                                $$

                                we obtain that
                                $$
                                1le frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}leleft(1+frac{b}{n^2}right)^n= left(Big(1+frac{b}{n^2}Big)^{n^2}right)^{1/n}to 1
                                $$

                                and hence
                                $$
                                lim_{ntoinfty}frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}=1.
                                $$






                                share|cite|improve this answer























                                • Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
                                  – Peter Szilas
                                  Nov 14 at 7:19













                                up vote
                                3
                                down vote










                                up vote
                                3
                                down vote









                                Let us first assume that $a,bge 0$. (The remaining cases $a<0$ can be treated analogously.)



                                Using the fact that
                                $$
                                s=lim_{ntoinfty}left(1+frac{a}{n}right)^nin (0,infty),
                                $$

                                we obtain that
                                $$
                                1le frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}leleft(1+frac{b}{n^2}right)^n= left(Big(1+frac{b}{n^2}Big)^{n^2}right)^{1/n}to 1
                                $$

                                and hence
                                $$
                                lim_{ntoinfty}frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}=1.
                                $$






                                share|cite|improve this answer














                                Let us first assume that $a,bge 0$. (The remaining cases $a<0$ can be treated analogously.)



                                Using the fact that
                                $$
                                s=lim_{ntoinfty}left(1+frac{a}{n}right)^nin (0,infty),
                                $$

                                we obtain that
                                $$
                                1le frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}leleft(1+frac{b}{n^2}right)^n= left(Big(1+frac{b}{n^2}Big)^{n^2}right)^{1/n}to 1
                                $$

                                and hence
                                $$
                                lim_{ntoinfty}frac{left(1+frac{a}{n}+frac{b}{n^2}right)^n}{left(1+frac{a}{n}right)^n}=1.
                                $$







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Nov 14 at 6:47

























                                answered Nov 14 at 6:39









                                Yiorgos S. Smyrlis

                                61.7k1383161




                                61.7k1383161












                                • Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
                                  – Peter Szilas
                                  Nov 14 at 7:19


















                                • Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
                                  – Peter Szilas
                                  Nov 14 at 7:19
















                                Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
                                – Peter Szilas
                                Nov 14 at 7:19




                                Yiorgos.Please elaborate After we obtain that : then the second inequality to third where you lose a/n. If you leave it off in the numerator you make the numerator smaller! Thanks.
                                – Peter Szilas
                                Nov 14 at 7:19










                                up vote
                                2
                                down vote













                                Let $n^2+an+b=(n+p)(n+q)implies p+q=a, pq=b$



                                $$lim_{ntoinfty}left(1+dfrac{an+b}{n^2}right)^n=lim_{ntoinfty}left(1+dfrac pnright)^nlim_{ntoinfty}left(1+dfrac qnright)^n=e^{p+q}=e^a$$



                                Now $left(1+dfrac anright)^n=?$






                                share|cite|improve this answer

























                                  up vote
                                  2
                                  down vote













                                  Let $n^2+an+b=(n+p)(n+q)implies p+q=a, pq=b$



                                  $$lim_{ntoinfty}left(1+dfrac{an+b}{n^2}right)^n=lim_{ntoinfty}left(1+dfrac pnright)^nlim_{ntoinfty}left(1+dfrac qnright)^n=e^{p+q}=e^a$$



                                  Now $left(1+dfrac anright)^n=?$






                                  share|cite|improve this answer























                                    up vote
                                    2
                                    down vote










                                    up vote
                                    2
                                    down vote









                                    Let $n^2+an+b=(n+p)(n+q)implies p+q=a, pq=b$



                                    $$lim_{ntoinfty}left(1+dfrac{an+b}{n^2}right)^n=lim_{ntoinfty}left(1+dfrac pnright)^nlim_{ntoinfty}left(1+dfrac qnright)^n=e^{p+q}=e^a$$



                                    Now $left(1+dfrac anright)^n=?$






                                    share|cite|improve this answer












                                    Let $n^2+an+b=(n+p)(n+q)implies p+q=a, pq=b$



                                    $$lim_{ntoinfty}left(1+dfrac{an+b}{n^2}right)^n=lim_{ntoinfty}left(1+dfrac pnright)^nlim_{ntoinfty}left(1+dfrac qnright)^n=e^{p+q}=e^a$$



                                    Now $left(1+dfrac anright)^n=?$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Nov 14 at 6:51









                                    lab bhattacharjee

                                    220k15154271




                                    220k15154271






























                                         

                                        draft saved


                                        draft discarded



















































                                         


                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2997875%2fprove-lim-n-rightarrow-infty1-fracan-fracbn2n-lim-n-rightarr%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                                        ComboBox Display Member on multiple fields

                                        Is it possible to collect Nectar points via Trainline?