What is the Fourier transform of the 2 dimensional airy function?












0












$begingroup$


What is the Fourier transform for the given two dimensional airy function,



$$f(x,y) = frac{J_1(r)}{r},.$$



Where $J_1$ is the Bessel function of the first kind, order one. And $r=sqrt{x^2+y^2}$.



Written explicitly,



$$mathcal{F}left[f(x,y)right] = int^infty_{-infty}int^infty_{-infty}f(x,y)expleft[ -i2pileft( f_xx+f_yyright)right], dx,dy, .$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    $mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
    $endgroup$
    – reuns
    Jan 1 at 17:11


















0












$begingroup$


What is the Fourier transform for the given two dimensional airy function,



$$f(x,y) = frac{J_1(r)}{r},.$$



Where $J_1$ is the Bessel function of the first kind, order one. And $r=sqrt{x^2+y^2}$.



Written explicitly,



$$mathcal{F}left[f(x,y)right] = int^infty_{-infty}int^infty_{-infty}f(x,y)expleft[ -i2pileft( f_xx+f_yyright)right], dx,dy, .$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    $mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
    $endgroup$
    – reuns
    Jan 1 at 17:11
















0












0








0





$begingroup$


What is the Fourier transform for the given two dimensional airy function,



$$f(x,y) = frac{J_1(r)}{r},.$$



Where $J_1$ is the Bessel function of the first kind, order one. And $r=sqrt{x^2+y^2}$.



Written explicitly,



$$mathcal{F}left[f(x,y)right] = int^infty_{-infty}int^infty_{-infty}f(x,y)expleft[ -i2pileft( f_xx+f_yyright)right], dx,dy, .$$










share|cite|improve this question









$endgroup$




What is the Fourier transform for the given two dimensional airy function,



$$f(x,y) = frac{J_1(r)}{r},.$$



Where $J_1$ is the Bessel function of the first kind, order one. And $r=sqrt{x^2+y^2}$.



Written explicitly,



$$mathcal{F}left[f(x,y)right] = int^infty_{-infty}int^infty_{-infty}f(x,y)expleft[ -i2pileft( f_xx+f_yyright)right], dx,dy, .$$







fourier-analysis fourier-transform bessel-functions airy-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 1 at 16:52









TianTian

77112




77112












  • $begingroup$
    $mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
    $endgroup$
    – reuns
    Jan 1 at 17:11




















  • $begingroup$
    $mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
    $endgroup$
    – reuns
    Jan 1 at 17:11


















$begingroup$
$mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
$endgroup$
– reuns
Jan 1 at 17:11






$begingroup$
$mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
$endgroup$
– reuns
Jan 1 at 17:11












1 Answer
1






active

oldest

votes


















0












$begingroup$

A radial function has a radial Fourier transform, and as stated by reuns in the comments we just need to evaluate



$$int_{0}^{+infty}J_1(r)int_{0}^{2pi} e^{-2pi i r cos(t) w},dt,dr $$
or
$$ 2pi int_{0}^{+infty} J_1(r) J_0(2pi r w),dr. $$
Using the Fourier transforms of $J_0$ and $J_1$, the last integral equals zero if $2pi w > 1$, $pi$ if $2pi w=1$ and $2pi$ if $0leq 2pi w<1$. In other terms the Fourier transform of your function is a multiple of the indicator function of the unit circle, halved on the boundary.






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058646%2fwhat-is-the-fourier-transform-of-the-2-dimensional-airy-function%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    A radial function has a radial Fourier transform, and as stated by reuns in the comments we just need to evaluate



    $$int_{0}^{+infty}J_1(r)int_{0}^{2pi} e^{-2pi i r cos(t) w},dt,dr $$
    or
    $$ 2pi int_{0}^{+infty} J_1(r) J_0(2pi r w),dr. $$
    Using the Fourier transforms of $J_0$ and $J_1$, the last integral equals zero if $2pi w > 1$, $pi$ if $2pi w=1$ and $2pi$ if $0leq 2pi w<1$. In other terms the Fourier transform of your function is a multiple of the indicator function of the unit circle, halved on the boundary.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      A radial function has a radial Fourier transform, and as stated by reuns in the comments we just need to evaluate



      $$int_{0}^{+infty}J_1(r)int_{0}^{2pi} e^{-2pi i r cos(t) w},dt,dr $$
      or
      $$ 2pi int_{0}^{+infty} J_1(r) J_0(2pi r w),dr. $$
      Using the Fourier transforms of $J_0$ and $J_1$, the last integral equals zero if $2pi w > 1$, $pi$ if $2pi w=1$ and $2pi$ if $0leq 2pi w<1$. In other terms the Fourier transform of your function is a multiple of the indicator function of the unit circle, halved on the boundary.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        A radial function has a radial Fourier transform, and as stated by reuns in the comments we just need to evaluate



        $$int_{0}^{+infty}J_1(r)int_{0}^{2pi} e^{-2pi i r cos(t) w},dt,dr $$
        or
        $$ 2pi int_{0}^{+infty} J_1(r) J_0(2pi r w),dr. $$
        Using the Fourier transforms of $J_0$ and $J_1$, the last integral equals zero if $2pi w > 1$, $pi$ if $2pi w=1$ and $2pi$ if $0leq 2pi w<1$. In other terms the Fourier transform of your function is a multiple of the indicator function of the unit circle, halved on the boundary.






        share|cite|improve this answer









        $endgroup$



        A radial function has a radial Fourier transform, and as stated by reuns in the comments we just need to evaluate



        $$int_{0}^{+infty}J_1(r)int_{0}^{2pi} e^{-2pi i r cos(t) w},dt,dr $$
        or
        $$ 2pi int_{0}^{+infty} J_1(r) J_0(2pi r w),dr. $$
        Using the Fourier transforms of $J_0$ and $J_1$, the last integral equals zero if $2pi w > 1$, $pi$ if $2pi w=1$ and $2pi$ if $0leq 2pi w<1$. In other terms the Fourier transform of your function is a multiple of the indicator function of the unit circle, halved on the boundary.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 1 at 19:47









        Jack D'AurizioJack D'Aurizio

        292k33284674




        292k33284674






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058646%2fwhat-is-the-fourier-transform-of-the-2-dimensional-airy-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

            ComboBox Display Member on multiple fields

            Is it possible to collect Nectar points via Trainline?