Prove that $ sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$ converges, using Abel's summation formula












0












$begingroup$


Let $(a_n)$ and $(b_n)$ be two sequences. Let $A_n = sum_{k=1}^n a_k$ and $A_0 = 0$. Prove that
$$sum_{n=p}^q a_n b_n = sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$$
for each $qgeq p geq 1$
Also, using this result prove that the series
$$ sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$$
converges.



For the second, converge part, the series continues like $1,frac{-1}{sqrt2},frac{1}{sqrt3},frac{-1}{sqrt4}$. So it converges to 0. But I do not know how to prove first part also using the first part to show this series converges.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
    $endgroup$
    – reuns
    Nov 23 '18 at 5:10










  • $begingroup$
    Summation by parts
    $endgroup$
    – JavaMan
    Nov 23 '18 at 5:29
















0












$begingroup$


Let $(a_n)$ and $(b_n)$ be two sequences. Let $A_n = sum_{k=1}^n a_k$ and $A_0 = 0$. Prove that
$$sum_{n=p}^q a_n b_n = sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$$
for each $qgeq p geq 1$
Also, using this result prove that the series
$$ sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$$
converges.



For the second, converge part, the series continues like $1,frac{-1}{sqrt2},frac{1}{sqrt3},frac{-1}{sqrt4}$. So it converges to 0. But I do not know how to prove first part also using the first part to show this series converges.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
    $endgroup$
    – reuns
    Nov 23 '18 at 5:10










  • $begingroup$
    Summation by parts
    $endgroup$
    – JavaMan
    Nov 23 '18 at 5:29














0












0








0


2



$begingroup$


Let $(a_n)$ and $(b_n)$ be two sequences. Let $A_n = sum_{k=1}^n a_k$ and $A_0 = 0$. Prove that
$$sum_{n=p}^q a_n b_n = sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$$
for each $qgeq p geq 1$
Also, using this result prove that the series
$$ sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$$
converges.



For the second, converge part, the series continues like $1,frac{-1}{sqrt2},frac{1}{sqrt3},frac{-1}{sqrt4}$. So it converges to 0. But I do not know how to prove first part also using the first part to show this series converges.










share|cite|improve this question











$endgroup$




Let $(a_n)$ and $(b_n)$ be two sequences. Let $A_n = sum_{k=1}^n a_k$ and $A_0 = 0$. Prove that
$$sum_{n=p}^q a_n b_n = sum_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$$
for each $qgeq p geq 1$
Also, using this result prove that the series
$$ sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$$
converges.



For the second, converge part, the series continues like $1,frac{-1}{sqrt2},frac{1}{sqrt3},frac{-1}{sqrt4}$. So it converges to 0. But I do not know how to prove first part also using the first part to show this series converges.







sequences-and-series summation-by-parts






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 14 '18 at 11:28









Did

249k23228466




249k23228466










asked Nov 23 '18 at 5:03









PumpkinPumpkin

5021419




5021419








  • 1




    $begingroup$
    Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
    $endgroup$
    – reuns
    Nov 23 '18 at 5:10










  • $begingroup$
    Summation by parts
    $endgroup$
    – JavaMan
    Nov 23 '18 at 5:29














  • 1




    $begingroup$
    Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
    $endgroup$
    – reuns
    Nov 23 '18 at 5:10










  • $begingroup$
    Summation by parts
    $endgroup$
    – JavaMan
    Nov 23 '18 at 5:29








1




1




$begingroup$
Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
$endgroup$
– reuns
Nov 23 '18 at 5:10




$begingroup$
Start with $sum_{n=p}^q a_n b_n = sum_{n=p}^q A_n b_n - sum_{n=p}^q A_{n-1} b_n$. And $sum_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}} ne 0$
$endgroup$
– reuns
Nov 23 '18 at 5:10












$begingroup$
Summation by parts
$endgroup$
– JavaMan
Nov 23 '18 at 5:29




$begingroup$
Summation by parts
$endgroup$
– JavaMan
Nov 23 '18 at 5:29










3 Answers
3






active

oldest

votes


















1












$begingroup$

Take $a_n=(-1)^{n+1}$ and $b_n=frac 1 {sqrt n}$. Check that $A_n$ is $1$ or $0$ for all $n$. Next note that $b_n-b_{n+1}=frac {sqrt {n+1}-sqrt {n}} {sqrt {n+1}sqrt {n}}$ which can be written as $frac 1 {sqrt {n+1}sqrt {n}(sqrt {n+1}+sqrt {n})} leq frac 1 {n^{3/2}}$. Use the fact that $sum frac 1 {n^{3/2}}<infty$ to complete the argument.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Answer for the second question:



    $sumlimits_{n=p}^q a_n b_n = sumlimits_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$



    Let's see the RHS of the statement:



    $ sumlimits_{n=p}^{q-1} A_nb_n - sumlimits_{n=p}^{q-1}A_nb_{n+1} + A_qb_q - A_{p-1}b_p$



    We can realize that



    $sumlimits_{n=p}^{q} A_nb_n=sumlimits_{n=p}^{q-1} A_nb_n+A_qb_q$ and



    $sumlimits_{n=p-1}^{q-1}A_nb_{n+1}=sumlimits_{n=p}^{q-1}A_nb_{n+1}+A_{p-1}b_p$



    So the RHS equal to:
    $sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p-1}^{q-1}A_nb_{n+1}$



    After performing the reindex of the second term we get:
    $sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p}^{q}A_{n-1}b_{n}$ and realize that



    $A_n - A_{n-1}=a_n$ we get the LHS of the statement: $sumlimits_{n=p}^q a_n b_n$






    share|cite|improve this answer









    $endgroup$





















      -1












      $begingroup$

      FYI, Determination of the value of the sum.



      $S=sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$



      Separate the sum accordance with even and odd terms. If i even then $i=2m$ and if i odd then $i=2m-1$



      $S=sumlimits_{m=1}^ inftybig( frac{1}{sqrt{2m-1}}-frac{1}{sqrt{2m}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ inftybig( frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{m+1}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{2}}sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$



      From the definition of the and Hurwitz zeta functions we get:



      $S=frac{1}{sqrt{2}}zeta(frac{1}{2},frac{1}{2})-frac{1}{sqrt{2}}zeta(frac{1}{2},1)$, as $zeta(frac{1}{2},1)=zeta(frac{1}{2})$



      and using the equality: $zeta(s,frac{1}{2})=(2^{-s}-1)zeta(s)$ (where $zeta(s)$ is the Riemann zeta function),
      we have the following result:



      $S=(1-sqrt{2})zeta(frac{1}{2})approx 0.60489...$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
        $endgroup$
        – Did
        Dec 14 '18 at 11:26














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009990%2fprove-that-sum-limits-i-1-infty-frac-1i1-sqrti-converges-u%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Take $a_n=(-1)^{n+1}$ and $b_n=frac 1 {sqrt n}$. Check that $A_n$ is $1$ or $0$ for all $n$. Next note that $b_n-b_{n+1}=frac {sqrt {n+1}-sqrt {n}} {sqrt {n+1}sqrt {n}}$ which can be written as $frac 1 {sqrt {n+1}sqrt {n}(sqrt {n+1}+sqrt {n})} leq frac 1 {n^{3/2}}$. Use the fact that $sum frac 1 {n^{3/2}}<infty$ to complete the argument.






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Take $a_n=(-1)^{n+1}$ and $b_n=frac 1 {sqrt n}$. Check that $A_n$ is $1$ or $0$ for all $n$. Next note that $b_n-b_{n+1}=frac {sqrt {n+1}-sqrt {n}} {sqrt {n+1}sqrt {n}}$ which can be written as $frac 1 {sqrt {n+1}sqrt {n}(sqrt {n+1}+sqrt {n})} leq frac 1 {n^{3/2}}$. Use the fact that $sum frac 1 {n^{3/2}}<infty$ to complete the argument.






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Take $a_n=(-1)^{n+1}$ and $b_n=frac 1 {sqrt n}$. Check that $A_n$ is $1$ or $0$ for all $n$. Next note that $b_n-b_{n+1}=frac {sqrt {n+1}-sqrt {n}} {sqrt {n+1}sqrt {n}}$ which can be written as $frac 1 {sqrt {n+1}sqrt {n}(sqrt {n+1}+sqrt {n})} leq frac 1 {n^{3/2}}$. Use the fact that $sum frac 1 {n^{3/2}}<infty$ to complete the argument.






          share|cite|improve this answer









          $endgroup$



          Take $a_n=(-1)^{n+1}$ and $b_n=frac 1 {sqrt n}$. Check that $A_n$ is $1$ or $0$ for all $n$. Next note that $b_n-b_{n+1}=frac {sqrt {n+1}-sqrt {n}} {sqrt {n+1}sqrt {n}}$ which can be written as $frac 1 {sqrt {n+1}sqrt {n}(sqrt {n+1}+sqrt {n})} leq frac 1 {n^{3/2}}$. Use the fact that $sum frac 1 {n^{3/2}}<infty$ to complete the argument.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 23 '18 at 5:30









          Kavi Rama MurthyKavi Rama Murthy

          73.6k53170




          73.6k53170























              1












              $begingroup$

              Answer for the second question:



              $sumlimits_{n=p}^q a_n b_n = sumlimits_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$



              Let's see the RHS of the statement:



              $ sumlimits_{n=p}^{q-1} A_nb_n - sumlimits_{n=p}^{q-1}A_nb_{n+1} + A_qb_q - A_{p-1}b_p$



              We can realize that



              $sumlimits_{n=p}^{q} A_nb_n=sumlimits_{n=p}^{q-1} A_nb_n+A_qb_q$ and



              $sumlimits_{n=p-1}^{q-1}A_nb_{n+1}=sumlimits_{n=p}^{q-1}A_nb_{n+1}+A_{p-1}b_p$



              So the RHS equal to:
              $sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p-1}^{q-1}A_nb_{n+1}$



              After performing the reindex of the second term we get:
              $sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p}^{q}A_{n-1}b_{n}$ and realize that



              $A_n - A_{n-1}=a_n$ we get the LHS of the statement: $sumlimits_{n=p}^q a_n b_n$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Answer for the second question:



                $sumlimits_{n=p}^q a_n b_n = sumlimits_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$



                Let's see the RHS of the statement:



                $ sumlimits_{n=p}^{q-1} A_nb_n - sumlimits_{n=p}^{q-1}A_nb_{n+1} + A_qb_q - A_{p-1}b_p$



                We can realize that



                $sumlimits_{n=p}^{q} A_nb_n=sumlimits_{n=p}^{q-1} A_nb_n+A_qb_q$ and



                $sumlimits_{n=p-1}^{q-1}A_nb_{n+1}=sumlimits_{n=p}^{q-1}A_nb_{n+1}+A_{p-1}b_p$



                So the RHS equal to:
                $sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p-1}^{q-1}A_nb_{n+1}$



                After performing the reindex of the second term we get:
                $sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p}^{q}A_{n-1}b_{n}$ and realize that



                $A_n - A_{n-1}=a_n$ we get the LHS of the statement: $sumlimits_{n=p}^q a_n b_n$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Answer for the second question:



                  $sumlimits_{n=p}^q a_n b_n = sumlimits_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$



                  Let's see the RHS of the statement:



                  $ sumlimits_{n=p}^{q-1} A_nb_n - sumlimits_{n=p}^{q-1}A_nb_{n+1} + A_qb_q - A_{p-1}b_p$



                  We can realize that



                  $sumlimits_{n=p}^{q} A_nb_n=sumlimits_{n=p}^{q-1} A_nb_n+A_qb_q$ and



                  $sumlimits_{n=p-1}^{q-1}A_nb_{n+1}=sumlimits_{n=p}^{q-1}A_nb_{n+1}+A_{p-1}b_p$



                  So the RHS equal to:
                  $sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p-1}^{q-1}A_nb_{n+1}$



                  After performing the reindex of the second term we get:
                  $sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p}^{q}A_{n-1}b_{n}$ and realize that



                  $A_n - A_{n-1}=a_n$ we get the LHS of the statement: $sumlimits_{n=p}^q a_n b_n$






                  share|cite|improve this answer









                  $endgroup$



                  Answer for the second question:



                  $sumlimits_{n=p}^q a_n b_n = sumlimits_{n=p}^{q-1} A_n(b_n - b_{n+1}) + A_qb_q - A_{p-1}b_p$



                  Let's see the RHS of the statement:



                  $ sumlimits_{n=p}^{q-1} A_nb_n - sumlimits_{n=p}^{q-1}A_nb_{n+1} + A_qb_q - A_{p-1}b_p$



                  We can realize that



                  $sumlimits_{n=p}^{q} A_nb_n=sumlimits_{n=p}^{q-1} A_nb_n+A_qb_q$ and



                  $sumlimits_{n=p-1}^{q-1}A_nb_{n+1}=sumlimits_{n=p}^{q-1}A_nb_{n+1}+A_{p-1}b_p$



                  So the RHS equal to:
                  $sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p-1}^{q-1}A_nb_{n+1}$



                  After performing the reindex of the second term we get:
                  $sumlimits_{n=p}^{q} A_nb_n-sumlimits_{n=p}^{q}A_{n-1}b_{n}$ and realize that



                  $A_n - A_{n-1}=a_n$ we get the LHS of the statement: $sumlimits_{n=p}^q a_n b_n$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 24 '18 at 7:01









                  JV.StalkerJV.Stalker

                  933149




                  933149























                      -1












                      $begingroup$

                      FYI, Determination of the value of the sum.



                      $S=sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$



                      Separate the sum accordance with even and odd terms. If i even then $i=2m$ and if i odd then $i=2m-1$



                      $S=sumlimits_{m=1}^ inftybig( frac{1}{sqrt{2m-1}}-frac{1}{sqrt{2m}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ inftybig( frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{m+1}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{2}}sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$



                      From the definition of the and Hurwitz zeta functions we get:



                      $S=frac{1}{sqrt{2}}zeta(frac{1}{2},frac{1}{2})-frac{1}{sqrt{2}}zeta(frac{1}{2},1)$, as $zeta(frac{1}{2},1)=zeta(frac{1}{2})$



                      and using the equality: $zeta(s,frac{1}{2})=(2^{-s}-1)zeta(s)$ (where $zeta(s)$ is the Riemann zeta function),
                      we have the following result:



                      $S=(1-sqrt{2})zeta(frac{1}{2})approx 0.60489...$






                      share|cite|improve this answer









                      $endgroup$













                      • $begingroup$
                        Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
                        $endgroup$
                        – Did
                        Dec 14 '18 at 11:26


















                      -1












                      $begingroup$

                      FYI, Determination of the value of the sum.



                      $S=sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$



                      Separate the sum accordance with even and odd terms. If i even then $i=2m$ and if i odd then $i=2m-1$



                      $S=sumlimits_{m=1}^ inftybig( frac{1}{sqrt{2m-1}}-frac{1}{sqrt{2m}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ inftybig( frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{m+1}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{2}}sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$



                      From the definition of the and Hurwitz zeta functions we get:



                      $S=frac{1}{sqrt{2}}zeta(frac{1}{2},frac{1}{2})-frac{1}{sqrt{2}}zeta(frac{1}{2},1)$, as $zeta(frac{1}{2},1)=zeta(frac{1}{2})$



                      and using the equality: $zeta(s,frac{1}{2})=(2^{-s}-1)zeta(s)$ (where $zeta(s)$ is the Riemann zeta function),
                      we have the following result:



                      $S=(1-sqrt{2})zeta(frac{1}{2})approx 0.60489...$






                      share|cite|improve this answer









                      $endgroup$













                      • $begingroup$
                        Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
                        $endgroup$
                        – Did
                        Dec 14 '18 at 11:26
















                      -1












                      -1








                      -1





                      $begingroup$

                      FYI, Determination of the value of the sum.



                      $S=sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$



                      Separate the sum accordance with even and odd terms. If i even then $i=2m$ and if i odd then $i=2m-1$



                      $S=sumlimits_{m=1}^ inftybig( frac{1}{sqrt{2m-1}}-frac{1}{sqrt{2m}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ inftybig( frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{m+1}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{2}}sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$



                      From the definition of the and Hurwitz zeta functions we get:



                      $S=frac{1}{sqrt{2}}zeta(frac{1}{2},frac{1}{2})-frac{1}{sqrt{2}}zeta(frac{1}{2},1)$, as $zeta(frac{1}{2},1)=zeta(frac{1}{2})$



                      and using the equality: $zeta(s,frac{1}{2})=(2^{-s}-1)zeta(s)$ (where $zeta(s)$ is the Riemann zeta function),
                      we have the following result:



                      $S=(1-sqrt{2})zeta(frac{1}{2})approx 0.60489...$






                      share|cite|improve this answer









                      $endgroup$



                      FYI, Determination of the value of the sum.



                      $S=sumlimits_{i=1}^ infty frac{(-1)^{i+1}}{sqrt{i}}$



                      Separate the sum accordance with even and odd terms. If i even then $i=2m$ and if i odd then $i=2m-1$



                      $S=sumlimits_{m=1}^ inftybig( frac{1}{sqrt{2m-1}}-frac{1}{sqrt{2m}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ inftybig( frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{m+1}}big)=frac{1}{sqrt{2}}sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}-frac{1}{sqrt{2}}sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$



                      From the definition of the and Hurwitz zeta functions we get:



                      $S=frac{1}{sqrt{2}}zeta(frac{1}{2},frac{1}{2})-frac{1}{sqrt{2}}zeta(frac{1}{2},1)$, as $zeta(frac{1}{2},1)=zeta(frac{1}{2})$



                      and using the equality: $zeta(s,frac{1}{2})=(2^{-s}-1)zeta(s)$ (where $zeta(s)$ is the Riemann zeta function),
                      we have the following result:



                      $S=(1-sqrt{2})zeta(frac{1}{2})approx 0.60489...$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Nov 23 '18 at 16:42









                      JV.StalkerJV.Stalker

                      933149




                      933149












                      • $begingroup$
                        Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
                        $endgroup$
                        – Did
                        Dec 14 '18 at 11:26




















                      • $begingroup$
                        Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
                        $endgroup$
                        – Did
                        Dec 14 '18 at 11:26


















                      $begingroup$
                      Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
                      $endgroup$
                      – Did
                      Dec 14 '18 at 11:26






                      $begingroup$
                      Unfortunately, both series $$sumlimits_{m=0}^ infty frac{1}{sqrt{m+frac{1}{2}}}$$ and $$sumlimits_{m=1}^ inftyfrac{1}{sqrt{m}}$$ diverge hence what this approach amounts to is to consider an indeterminate form $$infty-infty$$ as if it was not indeterminate. Not good!
                      $endgroup$
                      – Did
                      Dec 14 '18 at 11:26




















                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009990%2fprove-that-sum-limits-i-1-infty-frac-1i1-sqrti-converges-u%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                      ComboBox Display Member on multiple fields

                      Is it possible to collect Nectar points via Trainline?