Convergence test from Demidovich: $sum_{n=1}^{infty} frac{n^{n + frac{1}{n}}}{(n + frac{1}{n})^n}$












0












$begingroup$


I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't really decide what criteria should I use. Could you please give me some hint(s)?



$$sum_{n=1}^{infty} frac{n^{n + frac{1}{n}}}{(n + frac{1}{n})^n}$$










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't really decide what criteria should I use. Could you please give me some hint(s)?



    $$sum_{n=1}^{infty} frac{n^{n + frac{1}{n}}}{(n + frac{1}{n})^n}$$










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't really decide what criteria should I use. Could you please give me some hint(s)?



      $$sum_{n=1}^{infty} frac{n^{n + frac{1}{n}}}{(n + frac{1}{n})^n}$$










      share|cite|improve this question











      $endgroup$




      I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't really decide what criteria should I use. Could you please give me some hint(s)?



      $$sum_{n=1}^{infty} frac{n^{n + frac{1}{n}}}{(n + frac{1}{n})^n}$$







      calculus sequences-and-series convergence divergent-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 9 '18 at 13:24









      Martin Sleziak

      44.9k10121274




      44.9k10121274










      asked May 17 '16 at 23:12









      GogisGogis

      103113




      103113






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Hint: Since $n^{1/n} to 1,$ you can forget about it. We're left with an $n$th term equal to



          $$frac{n^n}{(n+1/n)^n} = left ( frac{1}{1 + 1/n^2} right )^n.$$






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            The $n^{th}$ root test looks tempting because of all the $n^{th}$ powers, but it only works when the rate of increase or decrease of the terms of the series is exponential, which is not the case here. Let's work out a couple of limits instead:
            $$lim_{nrightarrowinfty}n^{frac1n}=lim_{nrightarrowinfty}expleft(frac{ln n}nright)=expleft(frac 00right)=lim_{nrightarrowinfty}expleft(frac{frac1n}1right)=expleft(frac01right)=e^0=1$$
            And
            $$begin{align}lim_{nrightarrowinfty}left(1+frac1{n^2}right)^n&=lim_{nrightarrowinfty}expleft(nlnleft(1+frac1{n^2}right)right)\
            &=lim_{nrightarrowinfty}expleft(frac{lnleft(1+frac1{n^2}right)}{frac1n}right)=expleft(frac00right)\
            &=lim_{nrightarrowinfty}expleft(frac{frac{-frac2{n^3}}{1+frac1{n^2}}}{-frac1{n^2}}right)=lim_{nrightarrowinfty}expleft(frac{frac2n}{1+frac1{n^2}}right)\
            &=expleft(frac0{1+0}right)=e^0=1end{align}$$
            Then
            $$lim_{nrightarrowinfty}frac{n^{n+frac1n}}{left(n+frac1nright)^n}=lim_{nrightarrowinfty}frac{n^{frac1n}}{left(1+frac1{n^2}right)^n}=frac11=1ne0$$
            So the sum diverges by the divergence test.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1789685%2fconvergence-test-from-demidovich-sum-n-1-infty-fracnn-frac1n%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Hint: Since $n^{1/n} to 1,$ you can forget about it. We're left with an $n$th term equal to



              $$frac{n^n}{(n+1/n)^n} = left ( frac{1}{1 + 1/n^2} right )^n.$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Hint: Since $n^{1/n} to 1,$ you can forget about it. We're left with an $n$th term equal to



                $$frac{n^n}{(n+1/n)^n} = left ( frac{1}{1 + 1/n^2} right )^n.$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Hint: Since $n^{1/n} to 1,$ you can forget about it. We're left with an $n$th term equal to



                  $$frac{n^n}{(n+1/n)^n} = left ( frac{1}{1 + 1/n^2} right )^n.$$






                  share|cite|improve this answer









                  $endgroup$



                  Hint: Since $n^{1/n} to 1,$ you can forget about it. We're left with an $n$th term equal to



                  $$frac{n^n}{(n+1/n)^n} = left ( frac{1}{1 + 1/n^2} right )^n.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered May 17 '16 at 23:32









                  zhw.zhw.

                  74.5k43175




                  74.5k43175























                      2












                      $begingroup$

                      The $n^{th}$ root test looks tempting because of all the $n^{th}$ powers, but it only works when the rate of increase or decrease of the terms of the series is exponential, which is not the case here. Let's work out a couple of limits instead:
                      $$lim_{nrightarrowinfty}n^{frac1n}=lim_{nrightarrowinfty}expleft(frac{ln n}nright)=expleft(frac 00right)=lim_{nrightarrowinfty}expleft(frac{frac1n}1right)=expleft(frac01right)=e^0=1$$
                      And
                      $$begin{align}lim_{nrightarrowinfty}left(1+frac1{n^2}right)^n&=lim_{nrightarrowinfty}expleft(nlnleft(1+frac1{n^2}right)right)\
                      &=lim_{nrightarrowinfty}expleft(frac{lnleft(1+frac1{n^2}right)}{frac1n}right)=expleft(frac00right)\
                      &=lim_{nrightarrowinfty}expleft(frac{frac{-frac2{n^3}}{1+frac1{n^2}}}{-frac1{n^2}}right)=lim_{nrightarrowinfty}expleft(frac{frac2n}{1+frac1{n^2}}right)\
                      &=expleft(frac0{1+0}right)=e^0=1end{align}$$
                      Then
                      $$lim_{nrightarrowinfty}frac{n^{n+frac1n}}{left(n+frac1nright)^n}=lim_{nrightarrowinfty}frac{n^{frac1n}}{left(1+frac1{n^2}right)^n}=frac11=1ne0$$
                      So the sum diverges by the divergence test.






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        The $n^{th}$ root test looks tempting because of all the $n^{th}$ powers, but it only works when the rate of increase or decrease of the terms of the series is exponential, which is not the case here. Let's work out a couple of limits instead:
                        $$lim_{nrightarrowinfty}n^{frac1n}=lim_{nrightarrowinfty}expleft(frac{ln n}nright)=expleft(frac 00right)=lim_{nrightarrowinfty}expleft(frac{frac1n}1right)=expleft(frac01right)=e^0=1$$
                        And
                        $$begin{align}lim_{nrightarrowinfty}left(1+frac1{n^2}right)^n&=lim_{nrightarrowinfty}expleft(nlnleft(1+frac1{n^2}right)right)\
                        &=lim_{nrightarrowinfty}expleft(frac{lnleft(1+frac1{n^2}right)}{frac1n}right)=expleft(frac00right)\
                        &=lim_{nrightarrowinfty}expleft(frac{frac{-frac2{n^3}}{1+frac1{n^2}}}{-frac1{n^2}}right)=lim_{nrightarrowinfty}expleft(frac{frac2n}{1+frac1{n^2}}right)\
                        &=expleft(frac0{1+0}right)=e^0=1end{align}$$
                        Then
                        $$lim_{nrightarrowinfty}frac{n^{n+frac1n}}{left(n+frac1nright)^n}=lim_{nrightarrowinfty}frac{n^{frac1n}}{left(1+frac1{n^2}right)^n}=frac11=1ne0$$
                        So the sum diverges by the divergence test.






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          The $n^{th}$ root test looks tempting because of all the $n^{th}$ powers, but it only works when the rate of increase or decrease of the terms of the series is exponential, which is not the case here. Let's work out a couple of limits instead:
                          $$lim_{nrightarrowinfty}n^{frac1n}=lim_{nrightarrowinfty}expleft(frac{ln n}nright)=expleft(frac 00right)=lim_{nrightarrowinfty}expleft(frac{frac1n}1right)=expleft(frac01right)=e^0=1$$
                          And
                          $$begin{align}lim_{nrightarrowinfty}left(1+frac1{n^2}right)^n&=lim_{nrightarrowinfty}expleft(nlnleft(1+frac1{n^2}right)right)\
                          &=lim_{nrightarrowinfty}expleft(frac{lnleft(1+frac1{n^2}right)}{frac1n}right)=expleft(frac00right)\
                          &=lim_{nrightarrowinfty}expleft(frac{frac{-frac2{n^3}}{1+frac1{n^2}}}{-frac1{n^2}}right)=lim_{nrightarrowinfty}expleft(frac{frac2n}{1+frac1{n^2}}right)\
                          &=expleft(frac0{1+0}right)=e^0=1end{align}$$
                          Then
                          $$lim_{nrightarrowinfty}frac{n^{n+frac1n}}{left(n+frac1nright)^n}=lim_{nrightarrowinfty}frac{n^{frac1n}}{left(1+frac1{n^2}right)^n}=frac11=1ne0$$
                          So the sum diverges by the divergence test.






                          share|cite|improve this answer









                          $endgroup$



                          The $n^{th}$ root test looks tempting because of all the $n^{th}$ powers, but it only works when the rate of increase or decrease of the terms of the series is exponential, which is not the case here. Let's work out a couple of limits instead:
                          $$lim_{nrightarrowinfty}n^{frac1n}=lim_{nrightarrowinfty}expleft(frac{ln n}nright)=expleft(frac 00right)=lim_{nrightarrowinfty}expleft(frac{frac1n}1right)=expleft(frac01right)=e^0=1$$
                          And
                          $$begin{align}lim_{nrightarrowinfty}left(1+frac1{n^2}right)^n&=lim_{nrightarrowinfty}expleft(nlnleft(1+frac1{n^2}right)right)\
                          &=lim_{nrightarrowinfty}expleft(frac{lnleft(1+frac1{n^2}right)}{frac1n}right)=expleft(frac00right)\
                          &=lim_{nrightarrowinfty}expleft(frac{frac{-frac2{n^3}}{1+frac1{n^2}}}{-frac1{n^2}}right)=lim_{nrightarrowinfty}expleft(frac{frac2n}{1+frac1{n^2}}right)\
                          &=expleft(frac0{1+0}right)=e^0=1end{align}$$
                          Then
                          $$lim_{nrightarrowinfty}frac{n^{n+frac1n}}{left(n+frac1nright)^n}=lim_{nrightarrowinfty}frac{n^{frac1n}}{left(1+frac1{n^2}right)^n}=frac11=1ne0$$
                          So the sum diverges by the divergence test.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered May 17 '16 at 23:37









                          user5713492user5713492

                          11.1k2919




                          11.1k2919






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1789685%2fconvergence-test-from-demidovich-sum-n-1-infty-fracnn-frac1n%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                              ComboBox Display Member on multiple fields

                              Is it possible to collect Nectar points via Trainline?