What primes $p$ give solutions to $x^{2} equiv 7 ($mod $ p)$












-1












$begingroup$


I'm trying to understand how to solve this using the Legendre symbol but am having a hard time figuring out exactly what to do.



There are many different cases to consider but I do not know how to approach this problem.










share|cite|improve this question











$endgroup$












  • $begingroup$
    What are you stuck on? Do you know what the Legendre symbol actually is?
    $endgroup$
    – anomaly
    Nov 28 '18 at 0:58












  • $begingroup$
    It tells us whether we have a quadratic or non quadratic residue. I'm just not too familiar with computing it
    $endgroup$
    – Wallace
    Nov 28 '18 at 1:01
















-1












$begingroup$


I'm trying to understand how to solve this using the Legendre symbol but am having a hard time figuring out exactly what to do.



There are many different cases to consider but I do not know how to approach this problem.










share|cite|improve this question











$endgroup$












  • $begingroup$
    What are you stuck on? Do you know what the Legendre symbol actually is?
    $endgroup$
    – anomaly
    Nov 28 '18 at 0:58












  • $begingroup$
    It tells us whether we have a quadratic or non quadratic residue. I'm just not too familiar with computing it
    $endgroup$
    – Wallace
    Nov 28 '18 at 1:01














-1












-1








-1





$begingroup$


I'm trying to understand how to solve this using the Legendre symbol but am having a hard time figuring out exactly what to do.



There are many different cases to consider but I do not know how to approach this problem.










share|cite|improve this question











$endgroup$




I'm trying to understand how to solve this using the Legendre symbol but am having a hard time figuring out exactly what to do.



There are many different cases to consider but I do not know how to approach this problem.







number-theory quadratic-residues






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 28 '18 at 1:08









Henning Makholm

239k17304541




239k17304541










asked Nov 28 '18 at 0:38









WallaceWallace

1297




1297












  • $begingroup$
    What are you stuck on? Do you know what the Legendre symbol actually is?
    $endgroup$
    – anomaly
    Nov 28 '18 at 0:58












  • $begingroup$
    It tells us whether we have a quadratic or non quadratic residue. I'm just not too familiar with computing it
    $endgroup$
    – Wallace
    Nov 28 '18 at 1:01


















  • $begingroup$
    What are you stuck on? Do you know what the Legendre symbol actually is?
    $endgroup$
    – anomaly
    Nov 28 '18 at 0:58












  • $begingroup$
    It tells us whether we have a quadratic or non quadratic residue. I'm just not too familiar with computing it
    $endgroup$
    – Wallace
    Nov 28 '18 at 1:01
















$begingroup$
What are you stuck on? Do you know what the Legendre symbol actually is?
$endgroup$
– anomaly
Nov 28 '18 at 0:58






$begingroup$
What are you stuck on? Do you know what the Legendre symbol actually is?
$endgroup$
– anomaly
Nov 28 '18 at 0:58














$begingroup$
It tells us whether we have a quadratic or non quadratic residue. I'm just not too familiar with computing it
$endgroup$
– Wallace
Nov 28 '18 at 1:01




$begingroup$
It tells us whether we have a quadratic or non quadratic residue. I'm just not too familiar with computing it
$endgroup$
– Wallace
Nov 28 '18 at 1:01










3 Answers
3






active

oldest

votes


















2












$begingroup$

Another hint:



An odd prime is congruent to $1$ or $3mod 4$. Also, the non-zero squares modulo $7$ are $;1,,2$ and $4$. So




  • If $pequiv 1mod 4$, $(-1)^{tfrac{p-1}2}=1$, and $p$ has to be a square modulo $7$, i.e. $pequiv 1,2,4$.

  • If $pequiv 3mod 4$, $p$ has to be a non-square modulo $7$, i.e. $pequiv3,5,6$


Now use the Chinese remainder theorem:
$$mathbf Z/4mathbf Ztimes mathbf Z/7mathbf Zsimeqmathbf Z/28mathbf Z$$
to find the images of the pairs ${(1,1),,(1,2),,(1,4),,(3,3),,(3,5),,(3,6)}$ modulo $28$.






share|cite|improve this answer











$endgroup$





















    2












    $begingroup$

    Hint: If $p$ is an odd prime not equal to $7$ ($p=2$ works, $p=7$ does not), we have by quadratic reciprocity that



    $$left(frac{p}{7}right)left(frac{7}{p}right)=(-1)^{frac{6(p-1)}{4}}=(-1)^{frac{p-1}{2}},$$



    so we need



    $$left(frac{p}{7}right)=(-1)^{frac{p-1}{2}}.$$



    Now look at each residue for $pbmod 7$ and determine what residue $pbmod 4$ must be.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      If either $p$ or $-p$ has an integer expression as $u^2 - 7 v^2,$ it follows that there is a solution to $$ u^2 equiv 7 v^2 pmod p ; . ; $$
      Which, you know, means something.



           2    29    37    53   109   113   137   149   193   197
      233 277 281 317 337 373 389 401 421 449
      457 541 557 569 613 617 641 653 673 701
      709 757 809 821 877 953 977 1009 1033 1061

      3 7 19 31 47 59 83 103 131 139
      167 199 223 227 251 271 283 307 311 367
      383 419 439 467 479 503 523 563 587 607
      619 643 647 691 719 727 787 811 839 859
      887 971 983 1039 1063 1091 1123 1151 1223 1231





      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016533%2fwhat-primes-p-give-solutions-to-x2-equiv-7-mod-p%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        Another hint:



        An odd prime is congruent to $1$ or $3mod 4$. Also, the non-zero squares modulo $7$ are $;1,,2$ and $4$. So




        • If $pequiv 1mod 4$, $(-1)^{tfrac{p-1}2}=1$, and $p$ has to be a square modulo $7$, i.e. $pequiv 1,2,4$.

        • If $pequiv 3mod 4$, $p$ has to be a non-square modulo $7$, i.e. $pequiv3,5,6$


        Now use the Chinese remainder theorem:
        $$mathbf Z/4mathbf Ztimes mathbf Z/7mathbf Zsimeqmathbf Z/28mathbf Z$$
        to find the images of the pairs ${(1,1),,(1,2),,(1,4),,(3,3),,(3,5),,(3,6)}$ modulo $28$.






        share|cite|improve this answer











        $endgroup$


















          2












          $begingroup$

          Another hint:



          An odd prime is congruent to $1$ or $3mod 4$. Also, the non-zero squares modulo $7$ are $;1,,2$ and $4$. So




          • If $pequiv 1mod 4$, $(-1)^{tfrac{p-1}2}=1$, and $p$ has to be a square modulo $7$, i.e. $pequiv 1,2,4$.

          • If $pequiv 3mod 4$, $p$ has to be a non-square modulo $7$, i.e. $pequiv3,5,6$


          Now use the Chinese remainder theorem:
          $$mathbf Z/4mathbf Ztimes mathbf Z/7mathbf Zsimeqmathbf Z/28mathbf Z$$
          to find the images of the pairs ${(1,1),,(1,2),,(1,4),,(3,3),,(3,5),,(3,6)}$ modulo $28$.






          share|cite|improve this answer











          $endgroup$
















            2












            2








            2





            $begingroup$

            Another hint:



            An odd prime is congruent to $1$ or $3mod 4$. Also, the non-zero squares modulo $7$ are $;1,,2$ and $4$. So




            • If $pequiv 1mod 4$, $(-1)^{tfrac{p-1}2}=1$, and $p$ has to be a square modulo $7$, i.e. $pequiv 1,2,4$.

            • If $pequiv 3mod 4$, $p$ has to be a non-square modulo $7$, i.e. $pequiv3,5,6$


            Now use the Chinese remainder theorem:
            $$mathbf Z/4mathbf Ztimes mathbf Z/7mathbf Zsimeqmathbf Z/28mathbf Z$$
            to find the images of the pairs ${(1,1),,(1,2),,(1,4),,(3,3),,(3,5),,(3,6)}$ modulo $28$.






            share|cite|improve this answer











            $endgroup$



            Another hint:



            An odd prime is congruent to $1$ or $3mod 4$. Also, the non-zero squares modulo $7$ are $;1,,2$ and $4$. So




            • If $pequiv 1mod 4$, $(-1)^{tfrac{p-1}2}=1$, and $p$ has to be a square modulo $7$, i.e. $pequiv 1,2,4$.

            • If $pequiv 3mod 4$, $p$ has to be a non-square modulo $7$, i.e. $pequiv3,5,6$


            Now use the Chinese remainder theorem:
            $$mathbf Z/4mathbf Ztimes mathbf Z/7mathbf Zsimeqmathbf Z/28mathbf Z$$
            to find the images of the pairs ${(1,1),,(1,2),,(1,4),,(3,3),,(3,5),,(3,6)}$ modulo $28$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Nov 28 '18 at 9:25

























            answered Nov 28 '18 at 1:06









            BernardBernard

            119k740113




            119k740113























                2












                $begingroup$

                Hint: If $p$ is an odd prime not equal to $7$ ($p=2$ works, $p=7$ does not), we have by quadratic reciprocity that



                $$left(frac{p}{7}right)left(frac{7}{p}right)=(-1)^{frac{6(p-1)}{4}}=(-1)^{frac{p-1}{2}},$$



                so we need



                $$left(frac{p}{7}right)=(-1)^{frac{p-1}{2}}.$$



                Now look at each residue for $pbmod 7$ and determine what residue $pbmod 4$ must be.






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  Hint: If $p$ is an odd prime not equal to $7$ ($p=2$ works, $p=7$ does not), we have by quadratic reciprocity that



                  $$left(frac{p}{7}right)left(frac{7}{p}right)=(-1)^{frac{6(p-1)}{4}}=(-1)^{frac{p-1}{2}},$$



                  so we need



                  $$left(frac{p}{7}right)=(-1)^{frac{p-1}{2}}.$$



                  Now look at each residue for $pbmod 7$ and determine what residue $pbmod 4$ must be.






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Hint: If $p$ is an odd prime not equal to $7$ ($p=2$ works, $p=7$ does not), we have by quadratic reciprocity that



                    $$left(frac{p}{7}right)left(frac{7}{p}right)=(-1)^{frac{6(p-1)}{4}}=(-1)^{frac{p-1}{2}},$$



                    so we need



                    $$left(frac{p}{7}right)=(-1)^{frac{p-1}{2}}.$$



                    Now look at each residue for $pbmod 7$ and determine what residue $pbmod 4$ must be.






                    share|cite|improve this answer









                    $endgroup$



                    Hint: If $p$ is an odd prime not equal to $7$ ($p=2$ works, $p=7$ does not), we have by quadratic reciprocity that



                    $$left(frac{p}{7}right)left(frac{7}{p}right)=(-1)^{frac{6(p-1)}{4}}=(-1)^{frac{p-1}{2}},$$



                    so we need



                    $$left(frac{p}{7}right)=(-1)^{frac{p-1}{2}}.$$



                    Now look at each residue for $pbmod 7$ and determine what residue $pbmod 4$ must be.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 28 '18 at 0:51









                    Carl SchildkrautCarl Schildkraut

                    11.3k11441




                    11.3k11441























                        0












                        $begingroup$

                        If either $p$ or $-p$ has an integer expression as $u^2 - 7 v^2,$ it follows that there is a solution to $$ u^2 equiv 7 v^2 pmod p ; . ; $$
                        Which, you know, means something.



                             2    29    37    53   109   113   137   149   193   197
                        233 277 281 317 337 373 389 401 421 449
                        457 541 557 569 613 617 641 653 673 701
                        709 757 809 821 877 953 977 1009 1033 1061

                        3 7 19 31 47 59 83 103 131 139
                        167 199 223 227 251 271 283 307 311 367
                        383 419 439 467 479 503 523 563 587 607
                        619 643 647 691 719 727 787 811 839 859
                        887 971 983 1039 1063 1091 1123 1151 1223 1231





                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          If either $p$ or $-p$ has an integer expression as $u^2 - 7 v^2,$ it follows that there is a solution to $$ u^2 equiv 7 v^2 pmod p ; . ; $$
                          Which, you know, means something.



                               2    29    37    53   109   113   137   149   193   197
                          233 277 281 317 337 373 389 401 421 449
                          457 541 557 569 613 617 641 653 673 701
                          709 757 809 821 877 953 977 1009 1033 1061

                          3 7 19 31 47 59 83 103 131 139
                          167 199 223 227 251 271 283 307 311 367
                          383 419 439 467 479 503 523 563 587 607
                          619 643 647 691 719 727 787 811 839 859
                          887 971 983 1039 1063 1091 1123 1151 1223 1231





                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            If either $p$ or $-p$ has an integer expression as $u^2 - 7 v^2,$ it follows that there is a solution to $$ u^2 equiv 7 v^2 pmod p ; . ; $$
                            Which, you know, means something.



                                 2    29    37    53   109   113   137   149   193   197
                            233 277 281 317 337 373 389 401 421 449
                            457 541 557 569 613 617 641 653 673 701
                            709 757 809 821 877 953 977 1009 1033 1061

                            3 7 19 31 47 59 83 103 131 139
                            167 199 223 227 251 271 283 307 311 367
                            383 419 439 467 479 503 523 563 587 607
                            619 643 647 691 719 727 787 811 839 859
                            887 971 983 1039 1063 1091 1123 1151 1223 1231





                            share|cite|improve this answer









                            $endgroup$



                            If either $p$ or $-p$ has an integer expression as $u^2 - 7 v^2,$ it follows that there is a solution to $$ u^2 equiv 7 v^2 pmod p ; . ; $$
                            Which, you know, means something.



                                 2    29    37    53   109   113   137   149   193   197
                            233 277 281 317 337 373 389 401 421 449
                            457 541 557 569 613 617 641 653 673 701
                            709 757 809 821 877 953 977 1009 1033 1061

                            3 7 19 31 47 59 83 103 131 139
                            167 199 223 227 251 271 283 307 311 367
                            383 419 439 467 479 503 523 563 587 607
                            619 643 647 691 719 727 787 811 839 859
                            887 971 983 1039 1063 1091 1123 1151 1223 1231






                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 28 '18 at 2:28









                            Will JagyWill Jagy

                            103k5101200




                            103k5101200






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016533%2fwhat-primes-p-give-solutions-to-x2-equiv-7-mod-p%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                                ComboBox Display Member on multiple fields

                                Is it possible to collect Nectar points via Trainline?