Refinement of Schwarz's Lemma












0












$begingroup$


The following is a refinement of Schwarz's Lemma. I am trying to prove for $$|z| leq R$$ that
$$|f(z)|leq M left(frac{M|z|+|a|R}{|a||z|+MR}right)$$ where $$f(z)$$ is analytic in $$|z|leq R$$ such that $$|f(z)| leq M$$ on $z=R$ and $f(0)=a$ where $|a|< M$. I know we want to take a derivative, but still have not come up with a solution.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    The following is a refinement of Schwarz's Lemma. I am trying to prove for $$|z| leq R$$ that
    $$|f(z)|leq M left(frac{M|z|+|a|R}{|a||z|+MR}right)$$ where $$f(z)$$ is analytic in $$|z|leq R$$ such that $$|f(z)| leq M$$ on $z=R$ and $f(0)=a$ where $|a|< M$. I know we want to take a derivative, but still have not come up with a solution.










    share|cite|improve this question











    $endgroup$















      0












      0








      0


      0



      $begingroup$


      The following is a refinement of Schwarz's Lemma. I am trying to prove for $$|z| leq R$$ that
      $$|f(z)|leq M left(frac{M|z|+|a|R}{|a||z|+MR}right)$$ where $$f(z)$$ is analytic in $$|z|leq R$$ such that $$|f(z)| leq M$$ on $z=R$ and $f(0)=a$ where $|a|< M$. I know we want to take a derivative, but still have not come up with a solution.










      share|cite|improve this question











      $endgroup$




      The following is a refinement of Schwarz's Lemma. I am trying to prove for $$|z| leq R$$ that
      $$|f(z)|leq M left(frac{M|z|+|a|R}{|a||z|+MR}right)$$ where $$f(z)$$ is analytic in $$|z|leq R$$ such that $$|f(z)| leq M$$ on $z=R$ and $f(0)=a$ where $|a|< M$. I know we want to take a derivative, but still have not come up with a solution.







      analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 14 '18 at 5:42









      Song

      9,211627




      9,211627










      asked Nov 26 '18 at 3:48









      Charles BrannanCharles Brannan

      13




      13






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          Consider $$F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$$ If $f$ is analytic in $|z|leq 1$ and $|f(z)|leq 1$ in $|z|leq 1$, then $$|f(z)|leq frac{(1-|a|)|z^2|+|bz|+|a|(1-|a|)}{|a|(1-|a|)|z^2|+|bz|+(1-|a|)}$$ for $|z|leq 1$ where $a=f(0)$ and $b=f '(0)$. Thus $$f(z)=frac{a+frac{b}{1+a}z-z^2}{1-frac{b}{1+a}z-az^2}$$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Consider $F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$,$hspace{0.3cm}$ $|z|leq 1$ $hspace{0.3cm} Longrightarrow|Rz|leq R hspace{0.5cm}$



            Let $$hspace{0.2cm} overline{a}f(Rz)-M^2=0 hspace{0.1cm}\ Longleftrightarrow |a||f(Rz)|= M^2 Longleftrightarrow |f(Rz)|=frac{M^2}{|a|}>M$$ $|F(z)| leq Mhspace{0.3cm} $ on $hspace{0.3cm}|z|=R hspace{0.1cm} Longleftrightarrow |f(Rz)|leq M hspace{0.3cm}$ on $hspace{0.3cm}|z|leq 1 $ $$Longrightarrow|overline{a}f(Rz)| leq |a|M <M^2 Longrightarrow overline{a}f(Rz)-M^2neq 0$$ in $|z| leq 1 $. $$$$So, $F(z)$ is analytic in $|z|leq 1$. $$F(0)=Mleft(frac{f(0)-a}{overline{a}f(0)-M^2}right)=0$$ $$ $$Let $f(Rz)=w$, $hspace{0.4cm}w leq Mhspace{0.3cm}$ on $hspace{0.3cm}|z|=1$. $hspace{0.3cm}$ Now suppose $$left|M frac{w-a}{overline{a}w-M^2}right|^2=M^2 frac{|w|^2 + |a|^2-2hspace{0.1cm} Re(overline{a}w)}{M^4+|a|^2 |w|^2-2hspace{0.1cm} Re(M^2 overline{a}w)}leq 1$$ $Longleftrightarrow M^2 |w|^2+M^2|a|^2leq M^4+|a|^2 |w|^2$ $$Longleftrightarrow M^2 |a|^2-|a|^2|w|^2leq M^4-M^2 |w|^2 $$ $$Longleftrightarrow |a|^2leq M^2 Longleftrightarrow |a| leq M $$ $$$$So,$hspace{0.3cm}F(z) leq1 hspace{0.2cm}$ on $hspace{0.2cm}|z|=1.$ $hspace{0.2cm}$ By Schwarz's Lemma, we have $|F(z)|
            leq |z|$
            , $hspace{0.2cm}$so $$Mleft|frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right| leq|z| Longrightarrow left|frac{frac{f(Rz)}{M}-frac{a}{M}}{1-frac{{a}}{M}frac{f(Rz)}{M}}right|hspace{0.3cm} leq |z|$$ $$ Longrightarrow frac{frac{|f(Rz)|}{M}-frac{|a|}{M}}{1-frac{{|a|}}{M}frac{|f(Rz)|}{M}}hspace{0.3cm} leq |z|$$ $$Longrightarrow frac{|f(Rz)|}{M}-frac{|a|}{M} hspace{0.2cm}leq hspace{0.1cm} |z|-frac{|z||a||f(Rz)|}{M^2}$$ $$Longrightarrow frac{|f(Rz)|}{M}+frac{|z||a||f(Rz)|}{M^2} hspace{0.2cm}leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)| left(frac{1}{M}+hspace{0.2cm}frac{|z||a|}{M^2}right)leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)|leq frac{|z|+frac{|a|}{M}}{frac{1}{M}+frac{|z||a|)}{M^2}}hspace{0.3cm}= Mleft( frac{M|z|+|a|}{M+|z||a|}right)$$ Now let $hspace{0.2cm} u=
            Rz$
            , $hspace{0.3cm}|z|leq 1$, $hspace{0.2cm}$then $hspace{0.2cm} z=frac{u}{R}$, $hspace{0.2cm}$and $hspace{0.2cm}|u|leq R$.$hspace{0.3cm}$ So, $$|f(u)|leq M left(frac{Mfrac{|u|}{R}+|a|}{M+|a|frac{|u|}{R}}right)=Mleft( frac{M|u|+|a|R}{|a||u|+MR}right)hspace{0.2cm}$$ Therefore, the result follows replacing $u$ with $z$. $hspace{0.9cm}Box$






            share|cite|improve this answer











            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013808%2frefinement-of-schwarzs-lemma%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              Consider $$F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$$ If $f$ is analytic in $|z|leq 1$ and $|f(z)|leq 1$ in $|z|leq 1$, then $$|f(z)|leq frac{(1-|a|)|z^2|+|bz|+|a|(1-|a|)}{|a|(1-|a|)|z^2|+|bz|+(1-|a|)}$$ for $|z|leq 1$ where $a=f(0)$ and $b=f '(0)$. Thus $$f(z)=frac{a+frac{b}{1+a}z-z^2}{1-frac{b}{1+a}z-az^2}$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Consider $$F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$$ If $f$ is analytic in $|z|leq 1$ and $|f(z)|leq 1$ in $|z|leq 1$, then $$|f(z)|leq frac{(1-|a|)|z^2|+|bz|+|a|(1-|a|)}{|a|(1-|a|)|z^2|+|bz|+(1-|a|)}$$ for $|z|leq 1$ where $a=f(0)$ and $b=f '(0)$. Thus $$f(z)=frac{a+frac{b}{1+a}z-z^2}{1-frac{b}{1+a}z-az^2}$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Consider $$F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$$ If $f$ is analytic in $|z|leq 1$ and $|f(z)|leq 1$ in $|z|leq 1$, then $$|f(z)|leq frac{(1-|a|)|z^2|+|bz|+|a|(1-|a|)}{|a|(1-|a|)|z^2|+|bz|+(1-|a|)}$$ for $|z|leq 1$ where $a=f(0)$ and $b=f '(0)$. Thus $$f(z)=frac{a+frac{b}{1+a}z-z^2}{1-frac{b}{1+a}z-az^2}$$






                  share|cite|improve this answer









                  $endgroup$



                  Consider $$F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$$ If $f$ is analytic in $|z|leq 1$ and $|f(z)|leq 1$ in $|z|leq 1$, then $$|f(z)|leq frac{(1-|a|)|z^2|+|bz|+|a|(1-|a|)}{|a|(1-|a|)|z^2|+|bz|+(1-|a|)}$$ for $|z|leq 1$ where $a=f(0)$ and $b=f '(0)$. Thus $$f(z)=frac{a+frac{b}{1+a}z-z^2}{1-frac{b}{1+a}z-az^2}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 28 '18 at 22:25









                  user620787user620787

                  31




                  31























                      0












                      $begingroup$

                      Consider $F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$,$hspace{0.3cm}$ $|z|leq 1$ $hspace{0.3cm} Longrightarrow|Rz|leq R hspace{0.5cm}$



                      Let $$hspace{0.2cm} overline{a}f(Rz)-M^2=0 hspace{0.1cm}\ Longleftrightarrow |a||f(Rz)|= M^2 Longleftrightarrow |f(Rz)|=frac{M^2}{|a|}>M$$ $|F(z)| leq Mhspace{0.3cm} $ on $hspace{0.3cm}|z|=R hspace{0.1cm} Longleftrightarrow |f(Rz)|leq M hspace{0.3cm}$ on $hspace{0.3cm}|z|leq 1 $ $$Longrightarrow|overline{a}f(Rz)| leq |a|M <M^2 Longrightarrow overline{a}f(Rz)-M^2neq 0$$ in $|z| leq 1 $. $$$$So, $F(z)$ is analytic in $|z|leq 1$. $$F(0)=Mleft(frac{f(0)-a}{overline{a}f(0)-M^2}right)=0$$ $$ $$Let $f(Rz)=w$, $hspace{0.4cm}w leq Mhspace{0.3cm}$ on $hspace{0.3cm}|z|=1$. $hspace{0.3cm}$ Now suppose $$left|M frac{w-a}{overline{a}w-M^2}right|^2=M^2 frac{|w|^2 + |a|^2-2hspace{0.1cm} Re(overline{a}w)}{M^4+|a|^2 |w|^2-2hspace{0.1cm} Re(M^2 overline{a}w)}leq 1$$ $Longleftrightarrow M^2 |w|^2+M^2|a|^2leq M^4+|a|^2 |w|^2$ $$Longleftrightarrow M^2 |a|^2-|a|^2|w|^2leq M^4-M^2 |w|^2 $$ $$Longleftrightarrow |a|^2leq M^2 Longleftrightarrow |a| leq M $$ $$$$So,$hspace{0.3cm}F(z) leq1 hspace{0.2cm}$ on $hspace{0.2cm}|z|=1.$ $hspace{0.2cm}$ By Schwarz's Lemma, we have $|F(z)|
                      leq |z|$
                      , $hspace{0.2cm}$so $$Mleft|frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right| leq|z| Longrightarrow left|frac{frac{f(Rz)}{M}-frac{a}{M}}{1-frac{{a}}{M}frac{f(Rz)}{M}}right|hspace{0.3cm} leq |z|$$ $$ Longrightarrow frac{frac{|f(Rz)|}{M}-frac{|a|}{M}}{1-frac{{|a|}}{M}frac{|f(Rz)|}{M}}hspace{0.3cm} leq |z|$$ $$Longrightarrow frac{|f(Rz)|}{M}-frac{|a|}{M} hspace{0.2cm}leq hspace{0.1cm} |z|-frac{|z||a||f(Rz)|}{M^2}$$ $$Longrightarrow frac{|f(Rz)|}{M}+frac{|z||a||f(Rz)|}{M^2} hspace{0.2cm}leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)| left(frac{1}{M}+hspace{0.2cm}frac{|z||a|}{M^2}right)leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)|leq frac{|z|+frac{|a|}{M}}{frac{1}{M}+frac{|z||a|)}{M^2}}hspace{0.3cm}= Mleft( frac{M|z|+|a|}{M+|z||a|}right)$$ Now let $hspace{0.2cm} u=
                      Rz$
                      , $hspace{0.3cm}|z|leq 1$, $hspace{0.2cm}$then $hspace{0.2cm} z=frac{u}{R}$, $hspace{0.2cm}$and $hspace{0.2cm}|u|leq R$.$hspace{0.3cm}$ So, $$|f(u)|leq M left(frac{Mfrac{|u|}{R}+|a|}{M+|a|frac{|u|}{R}}right)=Mleft( frac{M|u|+|a|R}{|a||u|+MR}right)hspace{0.2cm}$$ Therefore, the result follows replacing $u$ with $z$. $hspace{0.9cm}Box$






                      share|cite|improve this answer











                      $endgroup$


















                        0












                        $begingroup$

                        Consider $F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$,$hspace{0.3cm}$ $|z|leq 1$ $hspace{0.3cm} Longrightarrow|Rz|leq R hspace{0.5cm}$



                        Let $$hspace{0.2cm} overline{a}f(Rz)-M^2=0 hspace{0.1cm}\ Longleftrightarrow |a||f(Rz)|= M^2 Longleftrightarrow |f(Rz)|=frac{M^2}{|a|}>M$$ $|F(z)| leq Mhspace{0.3cm} $ on $hspace{0.3cm}|z|=R hspace{0.1cm} Longleftrightarrow |f(Rz)|leq M hspace{0.3cm}$ on $hspace{0.3cm}|z|leq 1 $ $$Longrightarrow|overline{a}f(Rz)| leq |a|M <M^2 Longrightarrow overline{a}f(Rz)-M^2neq 0$$ in $|z| leq 1 $. $$$$So, $F(z)$ is analytic in $|z|leq 1$. $$F(0)=Mleft(frac{f(0)-a}{overline{a}f(0)-M^2}right)=0$$ $$ $$Let $f(Rz)=w$, $hspace{0.4cm}w leq Mhspace{0.3cm}$ on $hspace{0.3cm}|z|=1$. $hspace{0.3cm}$ Now suppose $$left|M frac{w-a}{overline{a}w-M^2}right|^2=M^2 frac{|w|^2 + |a|^2-2hspace{0.1cm} Re(overline{a}w)}{M^4+|a|^2 |w|^2-2hspace{0.1cm} Re(M^2 overline{a}w)}leq 1$$ $Longleftrightarrow M^2 |w|^2+M^2|a|^2leq M^4+|a|^2 |w|^2$ $$Longleftrightarrow M^2 |a|^2-|a|^2|w|^2leq M^4-M^2 |w|^2 $$ $$Longleftrightarrow |a|^2leq M^2 Longleftrightarrow |a| leq M $$ $$$$So,$hspace{0.3cm}F(z) leq1 hspace{0.2cm}$ on $hspace{0.2cm}|z|=1.$ $hspace{0.2cm}$ By Schwarz's Lemma, we have $|F(z)|
                        leq |z|$
                        , $hspace{0.2cm}$so $$Mleft|frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right| leq|z| Longrightarrow left|frac{frac{f(Rz)}{M}-frac{a}{M}}{1-frac{{a}}{M}frac{f(Rz)}{M}}right|hspace{0.3cm} leq |z|$$ $$ Longrightarrow frac{frac{|f(Rz)|}{M}-frac{|a|}{M}}{1-frac{{|a|}}{M}frac{|f(Rz)|}{M}}hspace{0.3cm} leq |z|$$ $$Longrightarrow frac{|f(Rz)|}{M}-frac{|a|}{M} hspace{0.2cm}leq hspace{0.1cm} |z|-frac{|z||a||f(Rz)|}{M^2}$$ $$Longrightarrow frac{|f(Rz)|}{M}+frac{|z||a||f(Rz)|}{M^2} hspace{0.2cm}leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)| left(frac{1}{M}+hspace{0.2cm}frac{|z||a|}{M^2}right)leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)|leq frac{|z|+frac{|a|}{M}}{frac{1}{M}+frac{|z||a|)}{M^2}}hspace{0.3cm}= Mleft( frac{M|z|+|a|}{M+|z||a|}right)$$ Now let $hspace{0.2cm} u=
                        Rz$
                        , $hspace{0.3cm}|z|leq 1$, $hspace{0.2cm}$then $hspace{0.2cm} z=frac{u}{R}$, $hspace{0.2cm}$and $hspace{0.2cm}|u|leq R$.$hspace{0.3cm}$ So, $$|f(u)|leq M left(frac{Mfrac{|u|}{R}+|a|}{M+|a|frac{|u|}{R}}right)=Mleft( frac{M|u|+|a|R}{|a||u|+MR}right)hspace{0.2cm}$$ Therefore, the result follows replacing $u$ with $z$. $hspace{0.9cm}Box$






                        share|cite|improve this answer











                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Consider $F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$,$hspace{0.3cm}$ $|z|leq 1$ $hspace{0.3cm} Longrightarrow|Rz|leq R hspace{0.5cm}$



                          Let $$hspace{0.2cm} overline{a}f(Rz)-M^2=0 hspace{0.1cm}\ Longleftrightarrow |a||f(Rz)|= M^2 Longleftrightarrow |f(Rz)|=frac{M^2}{|a|}>M$$ $|F(z)| leq Mhspace{0.3cm} $ on $hspace{0.3cm}|z|=R hspace{0.1cm} Longleftrightarrow |f(Rz)|leq M hspace{0.3cm}$ on $hspace{0.3cm}|z|leq 1 $ $$Longrightarrow|overline{a}f(Rz)| leq |a|M <M^2 Longrightarrow overline{a}f(Rz)-M^2neq 0$$ in $|z| leq 1 $. $$$$So, $F(z)$ is analytic in $|z|leq 1$. $$F(0)=Mleft(frac{f(0)-a}{overline{a}f(0)-M^2}right)=0$$ $$ $$Let $f(Rz)=w$, $hspace{0.4cm}w leq Mhspace{0.3cm}$ on $hspace{0.3cm}|z|=1$. $hspace{0.3cm}$ Now suppose $$left|M frac{w-a}{overline{a}w-M^2}right|^2=M^2 frac{|w|^2 + |a|^2-2hspace{0.1cm} Re(overline{a}w)}{M^4+|a|^2 |w|^2-2hspace{0.1cm} Re(M^2 overline{a}w)}leq 1$$ $Longleftrightarrow M^2 |w|^2+M^2|a|^2leq M^4+|a|^2 |w|^2$ $$Longleftrightarrow M^2 |a|^2-|a|^2|w|^2leq M^4-M^2 |w|^2 $$ $$Longleftrightarrow |a|^2leq M^2 Longleftrightarrow |a| leq M $$ $$$$So,$hspace{0.3cm}F(z) leq1 hspace{0.2cm}$ on $hspace{0.2cm}|z|=1.$ $hspace{0.2cm}$ By Schwarz's Lemma, we have $|F(z)|
                          leq |z|$
                          , $hspace{0.2cm}$so $$Mleft|frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right| leq|z| Longrightarrow left|frac{frac{f(Rz)}{M}-frac{a}{M}}{1-frac{{a}}{M}frac{f(Rz)}{M}}right|hspace{0.3cm} leq |z|$$ $$ Longrightarrow frac{frac{|f(Rz)|}{M}-frac{|a|}{M}}{1-frac{{|a|}}{M}frac{|f(Rz)|}{M}}hspace{0.3cm} leq |z|$$ $$Longrightarrow frac{|f(Rz)|}{M}-frac{|a|}{M} hspace{0.2cm}leq hspace{0.1cm} |z|-frac{|z||a||f(Rz)|}{M^2}$$ $$Longrightarrow frac{|f(Rz)|}{M}+frac{|z||a||f(Rz)|}{M^2} hspace{0.2cm}leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)| left(frac{1}{M}+hspace{0.2cm}frac{|z||a|}{M^2}right)leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)|leq frac{|z|+frac{|a|}{M}}{frac{1}{M}+frac{|z||a|)}{M^2}}hspace{0.3cm}= Mleft( frac{M|z|+|a|}{M+|z||a|}right)$$ Now let $hspace{0.2cm} u=
                          Rz$
                          , $hspace{0.3cm}|z|leq 1$, $hspace{0.2cm}$then $hspace{0.2cm} z=frac{u}{R}$, $hspace{0.2cm}$and $hspace{0.2cm}|u|leq R$.$hspace{0.3cm}$ So, $$|f(u)|leq M left(frac{Mfrac{|u|}{R}+|a|}{M+|a|frac{|u|}{R}}right)=Mleft( frac{M|u|+|a|R}{|a||u|+MR}right)hspace{0.2cm}$$ Therefore, the result follows replacing $u$ with $z$. $hspace{0.9cm}Box$






                          share|cite|improve this answer











                          $endgroup$



                          Consider $F(z)=Mleft(frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right)$,$hspace{0.3cm}$ $|z|leq 1$ $hspace{0.3cm} Longrightarrow|Rz|leq R hspace{0.5cm}$



                          Let $$hspace{0.2cm} overline{a}f(Rz)-M^2=0 hspace{0.1cm}\ Longleftrightarrow |a||f(Rz)|= M^2 Longleftrightarrow |f(Rz)|=frac{M^2}{|a|}>M$$ $|F(z)| leq Mhspace{0.3cm} $ on $hspace{0.3cm}|z|=R hspace{0.1cm} Longleftrightarrow |f(Rz)|leq M hspace{0.3cm}$ on $hspace{0.3cm}|z|leq 1 $ $$Longrightarrow|overline{a}f(Rz)| leq |a|M <M^2 Longrightarrow overline{a}f(Rz)-M^2neq 0$$ in $|z| leq 1 $. $$$$So, $F(z)$ is analytic in $|z|leq 1$. $$F(0)=Mleft(frac{f(0)-a}{overline{a}f(0)-M^2}right)=0$$ $$ $$Let $f(Rz)=w$, $hspace{0.4cm}w leq Mhspace{0.3cm}$ on $hspace{0.3cm}|z|=1$. $hspace{0.3cm}$ Now suppose $$left|M frac{w-a}{overline{a}w-M^2}right|^2=M^2 frac{|w|^2 + |a|^2-2hspace{0.1cm} Re(overline{a}w)}{M^4+|a|^2 |w|^2-2hspace{0.1cm} Re(M^2 overline{a}w)}leq 1$$ $Longleftrightarrow M^2 |w|^2+M^2|a|^2leq M^4+|a|^2 |w|^2$ $$Longleftrightarrow M^2 |a|^2-|a|^2|w|^2leq M^4-M^2 |w|^2 $$ $$Longleftrightarrow |a|^2leq M^2 Longleftrightarrow |a| leq M $$ $$$$So,$hspace{0.3cm}F(z) leq1 hspace{0.2cm}$ on $hspace{0.2cm}|z|=1.$ $hspace{0.2cm}$ By Schwarz's Lemma, we have $|F(z)|
                          leq |z|$
                          , $hspace{0.2cm}$so $$Mleft|frac{f(Rz)-a}{overline{a}f(Rz)-M^2}right| leq|z| Longrightarrow left|frac{frac{f(Rz)}{M}-frac{a}{M}}{1-frac{{a}}{M}frac{f(Rz)}{M}}right|hspace{0.3cm} leq |z|$$ $$ Longrightarrow frac{frac{|f(Rz)|}{M}-frac{|a|}{M}}{1-frac{{|a|}}{M}frac{|f(Rz)|}{M}}hspace{0.3cm} leq |z|$$ $$Longrightarrow frac{|f(Rz)|}{M}-frac{|a|}{M} hspace{0.2cm}leq hspace{0.1cm} |z|-frac{|z||a||f(Rz)|}{M^2}$$ $$Longrightarrow frac{|f(Rz)|}{M}+frac{|z||a||f(Rz)|}{M^2} hspace{0.2cm}leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)| left(frac{1}{M}+hspace{0.2cm}frac{|z||a|}{M^2}right)leq hspace{0.1cm} |z|+frac{|a|}{M}$$ $$Longrightarrow |f(Rz)|leq frac{|z|+frac{|a|}{M}}{frac{1}{M}+frac{|z||a|)}{M^2}}hspace{0.3cm}= Mleft( frac{M|z|+|a|}{M+|z||a|}right)$$ Now let $hspace{0.2cm} u=
                          Rz$
                          , $hspace{0.3cm}|z|leq 1$, $hspace{0.2cm}$then $hspace{0.2cm} z=frac{u}{R}$, $hspace{0.2cm}$and $hspace{0.2cm}|u|leq R$.$hspace{0.3cm}$ So, $$|f(u)|leq M left(frac{Mfrac{|u|}{R}+|a|}{M+|a|frac{|u|}{R}}right)=Mleft( frac{M|u|+|a|R}{|a||u|+MR}right)hspace{0.2cm}$$ Therefore, the result follows replacing $u$ with $z$. $hspace{0.9cm}Box$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Dec 14 '18 at 17:38

























                          answered Dec 14 '18 at 4:47









                          Charles BrannanCharles Brannan

                          13




                          13






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013808%2frefinement-of-schwarzs-lemma%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                              ComboBox Display Member on multiple fields

                              Is it possible to collect Nectar points via Trainline?