Finding matrix given eigenvalues and eigenvectors.












2












$begingroup$


a) Let $B$ be a 2x2 symmetric matrix and let $u$, $v$ be two eigenvectors of $B$ associated with the eigenvalues $w$ and $l$ respectively. Suppose $u$ = $$ left[
begin{array}{c}
1/sqrt2\
-1/sqrt2
end{array}
right] $$

and $v$ = $$ left[
begin{array}{c}
1/sqrt2\
1/sqrt2
end{array}
right] $$

with $w$= 1 and $l$=3 respectively, find matrix $B$.



b) Let $C$ be another symmetric matrix of order n with a characteristic polynomial $(w-w_1)(w-w_2)...(w-w_n)$ where $w_1≤w_2≤...≤w_n$. Prove that for any nonzero vector $x$ that belongs in $R^n$, $w_1≤x^TCx/x^Tx≤w_n$.



What I have done:
For part (a), converting $u$ and $v$ to orthogonal basis, I get $u_o$=$$ left[
begin{array}{c}
1\
-1
end{array}
right] $$
and $v_o$=$$ left[
begin{array}{c}
1\
1
end{array}
right] $$
. Letting $M$ = $$ left[
begin{array}{cc}
1&0\
0&3
end{array}
right] $$
and $S$ = $$ left[
begin{array}{cc}
1&1\
-1&1
end{array}
right] $$
, the matrix B is obtained by putting together $SMS^{-1}$ = $$ left[
begin{array}{cc}
2&1\
1&2
end{array}
right] $$
.



However, for part (b), while I can derive that $w_1,w_2,...,w_n$ are eigenvalues of C, I am unsure of how to proceed, hence may I get some help for this?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Use $Av=lambda v$ to get system of linear equations and solve.
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:13
















2












$begingroup$


a) Let $B$ be a 2x2 symmetric matrix and let $u$, $v$ be two eigenvectors of $B$ associated with the eigenvalues $w$ and $l$ respectively. Suppose $u$ = $$ left[
begin{array}{c}
1/sqrt2\
-1/sqrt2
end{array}
right] $$

and $v$ = $$ left[
begin{array}{c}
1/sqrt2\
1/sqrt2
end{array}
right] $$

with $w$= 1 and $l$=3 respectively, find matrix $B$.



b) Let $C$ be another symmetric matrix of order n with a characteristic polynomial $(w-w_1)(w-w_2)...(w-w_n)$ where $w_1≤w_2≤...≤w_n$. Prove that for any nonzero vector $x$ that belongs in $R^n$, $w_1≤x^TCx/x^Tx≤w_n$.



What I have done:
For part (a), converting $u$ and $v$ to orthogonal basis, I get $u_o$=$$ left[
begin{array}{c}
1\
-1
end{array}
right] $$
and $v_o$=$$ left[
begin{array}{c}
1\
1
end{array}
right] $$
. Letting $M$ = $$ left[
begin{array}{cc}
1&0\
0&3
end{array}
right] $$
and $S$ = $$ left[
begin{array}{cc}
1&1\
-1&1
end{array}
right] $$
, the matrix B is obtained by putting together $SMS^{-1}$ = $$ left[
begin{array}{cc}
2&1\
1&2
end{array}
right] $$
.



However, for part (b), while I can derive that $w_1,w_2,...,w_n$ are eigenvalues of C, I am unsure of how to proceed, hence may I get some help for this?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Use $Av=lambda v$ to get system of linear equations and solve.
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:13














2












2








2


1



$begingroup$


a) Let $B$ be a 2x2 symmetric matrix and let $u$, $v$ be two eigenvectors of $B$ associated with the eigenvalues $w$ and $l$ respectively. Suppose $u$ = $$ left[
begin{array}{c}
1/sqrt2\
-1/sqrt2
end{array}
right] $$

and $v$ = $$ left[
begin{array}{c}
1/sqrt2\
1/sqrt2
end{array}
right] $$

with $w$= 1 and $l$=3 respectively, find matrix $B$.



b) Let $C$ be another symmetric matrix of order n with a characteristic polynomial $(w-w_1)(w-w_2)...(w-w_n)$ where $w_1≤w_2≤...≤w_n$. Prove that for any nonzero vector $x$ that belongs in $R^n$, $w_1≤x^TCx/x^Tx≤w_n$.



What I have done:
For part (a), converting $u$ and $v$ to orthogonal basis, I get $u_o$=$$ left[
begin{array}{c}
1\
-1
end{array}
right] $$
and $v_o$=$$ left[
begin{array}{c}
1\
1
end{array}
right] $$
. Letting $M$ = $$ left[
begin{array}{cc}
1&0\
0&3
end{array}
right] $$
and $S$ = $$ left[
begin{array}{cc}
1&1\
-1&1
end{array}
right] $$
, the matrix B is obtained by putting together $SMS^{-1}$ = $$ left[
begin{array}{cc}
2&1\
1&2
end{array}
right] $$
.



However, for part (b), while I can derive that $w_1,w_2,...,w_n$ are eigenvalues of C, I am unsure of how to proceed, hence may I get some help for this?










share|cite|improve this question









$endgroup$




a) Let $B$ be a 2x2 symmetric matrix and let $u$, $v$ be two eigenvectors of $B$ associated with the eigenvalues $w$ and $l$ respectively. Suppose $u$ = $$ left[
begin{array}{c}
1/sqrt2\
-1/sqrt2
end{array}
right] $$

and $v$ = $$ left[
begin{array}{c}
1/sqrt2\
1/sqrt2
end{array}
right] $$

with $w$= 1 and $l$=3 respectively, find matrix $B$.



b) Let $C$ be another symmetric matrix of order n with a characteristic polynomial $(w-w_1)(w-w_2)...(w-w_n)$ where $w_1≤w_2≤...≤w_n$. Prove that for any nonzero vector $x$ that belongs in $R^n$, $w_1≤x^TCx/x^Tx≤w_n$.



What I have done:
For part (a), converting $u$ and $v$ to orthogonal basis, I get $u_o$=$$ left[
begin{array}{c}
1\
-1
end{array}
right] $$
and $v_o$=$$ left[
begin{array}{c}
1\
1
end{array}
right] $$
. Letting $M$ = $$ left[
begin{array}{cc}
1&0\
0&3
end{array}
right] $$
and $S$ = $$ left[
begin{array}{cc}
1&1\
-1&1
end{array}
right] $$
, the matrix B is obtained by putting together $SMS^{-1}$ = $$ left[
begin{array}{cc}
2&1\
1&2
end{array}
right] $$
.



However, for part (b), while I can derive that $w_1,w_2,...,w_n$ are eigenvalues of C, I am unsure of how to proceed, hence may I get some help for this?







linear-algebra matrices eigenvalues-eigenvectors linear-transformations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 26 '18 at 17:06









Cheryl Cheryl

755




755












  • $begingroup$
    Use $Av=lambda v$ to get system of linear equations and solve.
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:13


















  • $begingroup$
    Use $Av=lambda v$ to get system of linear equations and solve.
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:13
















$begingroup$
Use $Av=lambda v$ to get system of linear equations and solve.
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:13




$begingroup$
Use $Av=lambda v$ to get system of linear equations and solve.
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:13










1 Answer
1






active

oldest

votes


















1












$begingroup$

Suppose that $lVert xrVert=1$. Then $x^Tx=1$. On the other hand, let $(v_1,ldots,v_n)$ an orthonormal basis of eigenvecors, such that the eigenvalu corresponding to $v_k$ is $w_k$. Then $x$ can be written as $alpha_1v_1+cdots+alpha_kv_k$. So, $Cx=alpha_1w_1v_1+cdots+alpha_nw_nv_n$ and so$$x^TCX=lvertalpha_1rvert^2w_1+cdots+lvertalpha_nrvert^2w_n.$$Since $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$, this number is between $w_1$ and $w_n$.



If $x$ is an arbitrary non-zero vector, you can apply the previus result to $frac x{lVert xrVert}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:29










  • $begingroup$
    Because the basis is orthonormal and $lVert xrVert=1$.
    $endgroup$
    – José Carlos Santos
    Nov 26 '18 at 17:30












  • $begingroup$
    Oh ok sir. got it !
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:31











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014601%2ffinding-matrix-given-eigenvalues-and-eigenvectors%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Suppose that $lVert xrVert=1$. Then $x^Tx=1$. On the other hand, let $(v_1,ldots,v_n)$ an orthonormal basis of eigenvecors, such that the eigenvalu corresponding to $v_k$ is $w_k$. Then $x$ can be written as $alpha_1v_1+cdots+alpha_kv_k$. So, $Cx=alpha_1w_1v_1+cdots+alpha_nw_nv_n$ and so$$x^TCX=lvertalpha_1rvert^2w_1+cdots+lvertalpha_nrvert^2w_n.$$Since $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$, this number is between $w_1$ and $w_n$.



If $x$ is an arbitrary non-zero vector, you can apply the previus result to $frac x{lVert xrVert}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:29










  • $begingroup$
    Because the basis is orthonormal and $lVert xrVert=1$.
    $endgroup$
    – José Carlos Santos
    Nov 26 '18 at 17:30












  • $begingroup$
    Oh ok sir. got it !
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:31
















1












$begingroup$

Suppose that $lVert xrVert=1$. Then $x^Tx=1$. On the other hand, let $(v_1,ldots,v_n)$ an orthonormal basis of eigenvecors, such that the eigenvalu corresponding to $v_k$ is $w_k$. Then $x$ can be written as $alpha_1v_1+cdots+alpha_kv_k$. So, $Cx=alpha_1w_1v_1+cdots+alpha_nw_nv_n$ and so$$x^TCX=lvertalpha_1rvert^2w_1+cdots+lvertalpha_nrvert^2w_n.$$Since $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$, this number is between $w_1$ and $w_n$.



If $x$ is an arbitrary non-zero vector, you can apply the previus result to $frac x{lVert xrVert}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:29










  • $begingroup$
    Because the basis is orthonormal and $lVert xrVert=1$.
    $endgroup$
    – José Carlos Santos
    Nov 26 '18 at 17:30












  • $begingroup$
    Oh ok sir. got it !
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:31














1












1








1





$begingroup$

Suppose that $lVert xrVert=1$. Then $x^Tx=1$. On the other hand, let $(v_1,ldots,v_n)$ an orthonormal basis of eigenvecors, such that the eigenvalu corresponding to $v_k$ is $w_k$. Then $x$ can be written as $alpha_1v_1+cdots+alpha_kv_k$. So, $Cx=alpha_1w_1v_1+cdots+alpha_nw_nv_n$ and so$$x^TCX=lvertalpha_1rvert^2w_1+cdots+lvertalpha_nrvert^2w_n.$$Since $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$, this number is between $w_1$ and $w_n$.



If $x$ is an arbitrary non-zero vector, you can apply the previus result to $frac x{lVert xrVert}$.






share|cite|improve this answer









$endgroup$



Suppose that $lVert xrVert=1$. Then $x^Tx=1$. On the other hand, let $(v_1,ldots,v_n)$ an orthonormal basis of eigenvecors, such that the eigenvalu corresponding to $v_k$ is $w_k$. Then $x$ can be written as $alpha_1v_1+cdots+alpha_kv_k$. So, $Cx=alpha_1w_1v_1+cdots+alpha_nw_nv_n$ and so$$x^TCX=lvertalpha_1rvert^2w_1+cdots+lvertalpha_nrvert^2w_n.$$Since $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$, this number is between $w_1$ and $w_n$.



If $x$ is an arbitrary non-zero vector, you can apply the previus result to $frac x{lVert xrVert}$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 26 '18 at 17:20









José Carlos SantosJosé Carlos Santos

156k22125227




156k22125227












  • $begingroup$
    Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:29










  • $begingroup$
    Because the basis is orthonormal and $lVert xrVert=1$.
    $endgroup$
    – José Carlos Santos
    Nov 26 '18 at 17:30












  • $begingroup$
    Oh ok sir. got it !
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:31


















  • $begingroup$
    Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:29










  • $begingroup$
    Because the basis is orthonormal and $lVert xrVert=1$.
    $endgroup$
    – José Carlos Santos
    Nov 26 '18 at 17:30












  • $begingroup$
    Oh ok sir. got it !
    $endgroup$
    – Yadati Kiran
    Nov 26 '18 at 17:31
















$begingroup$
Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:29




$begingroup$
Sir Why in particular is $lvertalpha_1rvert^2+cdots+lvertalpha_nrvert^2=1$?
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:29












$begingroup$
Because the basis is orthonormal and $lVert xrVert=1$.
$endgroup$
– José Carlos Santos
Nov 26 '18 at 17:30






$begingroup$
Because the basis is orthonormal and $lVert xrVert=1$.
$endgroup$
– José Carlos Santos
Nov 26 '18 at 17:30














$begingroup$
Oh ok sir. got it !
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:31




$begingroup$
Oh ok sir. got it !
$endgroup$
– Yadati Kiran
Nov 26 '18 at 17:31


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014601%2ffinding-matrix-given-eigenvalues-and-eigenvectors%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

ComboBox Display Member on multiple fields

Is it possible to collect Nectar points via Trainline?