Find all real numbers $x,y,zin [0,1]^3$ such that $(x^2+y^2)sqrt{1-z^2}ge z$…












2












$begingroup$


Such that:
$$(x^2+y^2)sqrt{1-z^2}ge z$$
and
$$(z^2+y^2)sqrt{1-x^2}ge x$$
and
$$(x^2+z^2)sqrt{1-y^2}ge y$$
Since $x,y,z$ $in ]0,1[^3$



then , there are some real numbers $a,b,c$ such that
$cos a=x, cos b=y , cos c=z$



After some manipulations , we find that :
$$frac{1}{1+tan^2 a}+frac{1}{1+tan^2 b}ge frac{1}{tan c}$$
.... same for other inequalities



I don't know what i must do now



Source : Test N°1 for IMO 2020 in Morocoo










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Such that:
    $$(x^2+y^2)sqrt{1-z^2}ge z$$
    and
    $$(z^2+y^2)sqrt{1-x^2}ge x$$
    and
    $$(x^2+z^2)sqrt{1-y^2}ge y$$
    Since $x,y,z$ $in ]0,1[^3$



    then , there are some real numbers $a,b,c$ such that
    $cos a=x, cos b=y , cos c=z$



    After some manipulations , we find that :
    $$frac{1}{1+tan^2 a}+frac{1}{1+tan^2 b}ge frac{1}{tan c}$$
    .... same for other inequalities



    I don't know what i must do now



    Source : Test N°1 for IMO 2020 in Morocoo










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      2



      $begingroup$


      Such that:
      $$(x^2+y^2)sqrt{1-z^2}ge z$$
      and
      $$(z^2+y^2)sqrt{1-x^2}ge x$$
      and
      $$(x^2+z^2)sqrt{1-y^2}ge y$$
      Since $x,y,z$ $in ]0,1[^3$



      then , there are some real numbers $a,b,c$ such that
      $cos a=x, cos b=y , cos c=z$



      After some manipulations , we find that :
      $$frac{1}{1+tan^2 a}+frac{1}{1+tan^2 b}ge frac{1}{tan c}$$
      .... same for other inequalities



      I don't know what i must do now



      Source : Test N°1 for IMO 2020 in Morocoo










      share|cite|improve this question











      $endgroup$




      Such that:
      $$(x^2+y^2)sqrt{1-z^2}ge z$$
      and
      $$(z^2+y^2)sqrt{1-x^2}ge x$$
      and
      $$(x^2+z^2)sqrt{1-y^2}ge y$$
      Since $x,y,z$ $in ]0,1[^3$



      then , there are some real numbers $a,b,c$ such that
      $cos a=x, cos b=y , cos c=z$



      After some manipulations , we find that :
      $$frac{1}{1+tan^2 a}+frac{1}{1+tan^2 b}ge frac{1}{tan c}$$
      .... same for other inequalities



      I don't know what i must do now



      Source : Test N°1 for IMO 2020 in Morocoo







      inequality contest-math






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 23 '18 at 20:54









      Michael Rozenberg

      97.6k1589188




      97.6k1589188










      asked Nov 23 '18 at 19:20









      user600785user600785

      6810




      6810






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          The inequality is symetric.



          so we can suppose that $xge y ge z$



          the second inequality becomes
          $$2x^2sqrt{1-x^2}ge x$$
          $$2xsqrt{1-x^2}ge 1$$
          $$4x^2-4x^4-1ge 0$$
          $$-(2x^2-1)^2ge 0$$
          $$2x^2-1=0$$



          $$x=frac{1}{sqrt{2}}$$



          By the same way , after remplacing $x$ by its value
          we will find that $x=y=z=frac{1}{sqrt{2}}$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
            $endgroup$
            – Michael Rozenberg
            Nov 23 '18 at 21:27










          • $begingroup$
            but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
            $endgroup$
            – user600785
            Nov 23 '18 at 21:56










          • $begingroup$
            But by the given it gives a solution. You can't change the given.It's not fair.
            $endgroup$
            – Michael Rozenberg
            Nov 23 '18 at 22:07





















          2












          $begingroup$

          You were very close, but you made a mistake. You should have
          $$frac{1}{1+tan^2 a}+frac{1}{1+tan^2b}geq frac{1}{tan c}$$
          instead. Here is a similar approach.



          First, we assume that $x,y,z>0$. So, we can define $p,q,rgeq 0$ to be $frac{sqrt{1-x^2}}{x}$, $frac{sqrt{1-y^2}}{y}$, and $frac{sqrt{1-z^2}}{z}$, respectively. The three inequalities become
          $$frac{1}{1+p^2}+frac{1}{1+q^2}geq frac1rwedge frac{1}{1+q^2}+frac{1}{1+r^2}geq frac1p wedge frac{1}{1+r^2}+frac{1}{1+p^2}geq frac1q.$$
          Adding all of these and then dividing the result by $2$ yield
          $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}geq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{1}$$
          However, by AM-GM, $1+p^2ge 2p$, $1+q^2ge 2q$, and $1+r^2ge 2r$. That is,
          $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}leq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{2}$$
          From (1) and (2), we must have
          $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}= frac{1}{2p}+frac{1}{2q}+frac{1}{2r},$$
          which implies $1+p^2=2p$, $1+q^2=2q$, $1+r^2=2r$, so $p=q=r=1$ and $x=y=z=frac1{sqrt{2}}$.



          Now, WLOG, if $x=0$, then $y^2sqrt{1-z^2}geq z$ and $z^2sqrt{1-y^2}geq y$. Multiplying the two inequalities gives
          $$y^2z^2sqrt{1-y^2}sqrt{1-z^2}geq yz.$$
          If $yzneq 0$, then dividing by $yz$, we have
          $$yzsqrt{1-y^2}sqrt{1-z^2}geq 1.$$
          But by AM-GM, $ysqrt{1-y^2}=sqrt{y^2(1-y^2)}leq frac{y^2+(1-y^2)}{2}=frac12$ and similarly, $zsqrt{1-z^2}leq frac12$. So,
          $$yzsqrt{1-y^2}sqrt{1-z^2}leq frac12cdotfrac12=frac14<1.$$
          This is a contradiction, so $yz=0$, so $y=0$ or $z=0$, so $x=y=z=0$. Therefore, if any of the variables is $0$, all of them are $0$. There are then two solutions $$x=y=z=0 wedge x=y=z=1/sqrt{2}.$$






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            The hint:
            $$(x^2+y^2)sqrt{1-z^2}geq z$$ it's
            $$(x^2+y^2)^2(1-z^2)geq z^2$$ or
            $$(x^2+y^2)^2geq((x^2+y^2)^2+1)z^2,$$ which gives
            $$z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$$
            By the same way $$y^2leqfrac{x^2+z^2}{2}$$ and $$x^2leqfrac{y^2+z^2}{2},$$ which gives
            $$x=y=z$$ and all inequalities the are equalities.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
              $endgroup$
              – user600785
              Nov 24 '18 at 10:16










            • $begingroup$
              @user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
              $endgroup$
              – Michael Rozenberg
              Nov 24 '18 at 12:20













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010735%2ffind-all-real-numbers-x-y-z-in-0-13-such-that-x2y2-sqrt1-z2-ge-z%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            The inequality is symetric.



            so we can suppose that $xge y ge z$



            the second inequality becomes
            $$2x^2sqrt{1-x^2}ge x$$
            $$2xsqrt{1-x^2}ge 1$$
            $$4x^2-4x^4-1ge 0$$
            $$-(2x^2-1)^2ge 0$$
            $$2x^2-1=0$$



            $$x=frac{1}{sqrt{2}}$$



            By the same way , after remplacing $x$ by its value
            we will find that $x=y=z=frac{1}{sqrt{2}}$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
              $endgroup$
              – Michael Rozenberg
              Nov 23 '18 at 21:27










            • $begingroup$
              but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
              $endgroup$
              – user600785
              Nov 23 '18 at 21:56










            • $begingroup$
              But by the given it gives a solution. You can't change the given.It's not fair.
              $endgroup$
              – Michael Rozenberg
              Nov 23 '18 at 22:07


















            3












            $begingroup$

            The inequality is symetric.



            so we can suppose that $xge y ge z$



            the second inequality becomes
            $$2x^2sqrt{1-x^2}ge x$$
            $$2xsqrt{1-x^2}ge 1$$
            $$4x^2-4x^4-1ge 0$$
            $$-(2x^2-1)^2ge 0$$
            $$2x^2-1=0$$



            $$x=frac{1}{sqrt{2}}$$



            By the same way , after remplacing $x$ by its value
            we will find that $x=y=z=frac{1}{sqrt{2}}$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
              $endgroup$
              – Michael Rozenberg
              Nov 23 '18 at 21:27










            • $begingroup$
              but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
              $endgroup$
              – user600785
              Nov 23 '18 at 21:56










            • $begingroup$
              But by the given it gives a solution. You can't change the given.It's not fair.
              $endgroup$
              – Michael Rozenberg
              Nov 23 '18 at 22:07
















            3












            3








            3





            $begingroup$

            The inequality is symetric.



            so we can suppose that $xge y ge z$



            the second inequality becomes
            $$2x^2sqrt{1-x^2}ge x$$
            $$2xsqrt{1-x^2}ge 1$$
            $$4x^2-4x^4-1ge 0$$
            $$-(2x^2-1)^2ge 0$$
            $$2x^2-1=0$$



            $$x=frac{1}{sqrt{2}}$$



            By the same way , after remplacing $x$ by its value
            we will find that $x=y=z=frac{1}{sqrt{2}}$






            share|cite|improve this answer











            $endgroup$



            The inequality is symetric.



            so we can suppose that $xge y ge z$



            the second inequality becomes
            $$2x^2sqrt{1-x^2}ge x$$
            $$2xsqrt{1-x^2}ge 1$$
            $$4x^2-4x^4-1ge 0$$
            $$-(2x^2-1)^2ge 0$$
            $$2x^2-1=0$$



            $$x=frac{1}{sqrt{2}}$$



            By the same way , after remplacing $x$ by its value
            we will find that $x=y=z=frac{1}{sqrt{2}}$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Nov 23 '18 at 21:14

























            answered Nov 23 '18 at 21:09









            user600785user600785

            6810




            6810












            • $begingroup$
              Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
              $endgroup$
              – Michael Rozenberg
              Nov 23 '18 at 21:27










            • $begingroup$
              but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
              $endgroup$
              – user600785
              Nov 23 '18 at 21:56










            • $begingroup$
              But by the given it gives a solution. You can't change the given.It's not fair.
              $endgroup$
              – Michael Rozenberg
              Nov 23 '18 at 22:07




















            • $begingroup$
              Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
              $endgroup$
              – Michael Rozenberg
              Nov 23 '18 at 21:27










            • $begingroup$
              but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
              $endgroup$
              – user600785
              Nov 23 '18 at 21:56










            • $begingroup$
              But by the given it gives a solution. You can't change the given.It's not fair.
              $endgroup$
              – Michael Rozenberg
              Nov 23 '18 at 22:07


















            $begingroup$
            Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
            $endgroup$
            – Michael Rozenberg
            Nov 23 '18 at 21:27




            $begingroup$
            Also there is the case $x=0$, which gives $x=y=z=0$. Nice! +1.
            $endgroup$
            – Michael Rozenberg
            Nov 23 '18 at 21:27












            $begingroup$
            but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
            $endgroup$
            – user600785
            Nov 23 '18 at 21:56




            $begingroup$
            but I wrotte $]0;1[$ , sooo we can't have $0$ as a solution.
            $endgroup$
            – user600785
            Nov 23 '18 at 21:56












            $begingroup$
            But by the given it gives a solution. You can't change the given.It's not fair.
            $endgroup$
            – Michael Rozenberg
            Nov 23 '18 at 22:07






            $begingroup$
            But by the given it gives a solution. You can't change the given.It's not fair.
            $endgroup$
            – Michael Rozenberg
            Nov 23 '18 at 22:07













            2












            $begingroup$

            You were very close, but you made a mistake. You should have
            $$frac{1}{1+tan^2 a}+frac{1}{1+tan^2b}geq frac{1}{tan c}$$
            instead. Here is a similar approach.



            First, we assume that $x,y,z>0$. So, we can define $p,q,rgeq 0$ to be $frac{sqrt{1-x^2}}{x}$, $frac{sqrt{1-y^2}}{y}$, and $frac{sqrt{1-z^2}}{z}$, respectively. The three inequalities become
            $$frac{1}{1+p^2}+frac{1}{1+q^2}geq frac1rwedge frac{1}{1+q^2}+frac{1}{1+r^2}geq frac1p wedge frac{1}{1+r^2}+frac{1}{1+p^2}geq frac1q.$$
            Adding all of these and then dividing the result by $2$ yield
            $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}geq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{1}$$
            However, by AM-GM, $1+p^2ge 2p$, $1+q^2ge 2q$, and $1+r^2ge 2r$. That is,
            $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}leq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{2}$$
            From (1) and (2), we must have
            $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}= frac{1}{2p}+frac{1}{2q}+frac{1}{2r},$$
            which implies $1+p^2=2p$, $1+q^2=2q$, $1+r^2=2r$, so $p=q=r=1$ and $x=y=z=frac1{sqrt{2}}$.



            Now, WLOG, if $x=0$, then $y^2sqrt{1-z^2}geq z$ and $z^2sqrt{1-y^2}geq y$. Multiplying the two inequalities gives
            $$y^2z^2sqrt{1-y^2}sqrt{1-z^2}geq yz.$$
            If $yzneq 0$, then dividing by $yz$, we have
            $$yzsqrt{1-y^2}sqrt{1-z^2}geq 1.$$
            But by AM-GM, $ysqrt{1-y^2}=sqrt{y^2(1-y^2)}leq frac{y^2+(1-y^2)}{2}=frac12$ and similarly, $zsqrt{1-z^2}leq frac12$. So,
            $$yzsqrt{1-y^2}sqrt{1-z^2}leq frac12cdotfrac12=frac14<1.$$
            This is a contradiction, so $yz=0$, so $y=0$ or $z=0$, so $x=y=z=0$. Therefore, if any of the variables is $0$, all of them are $0$. There are then two solutions $$x=y=z=0 wedge x=y=z=1/sqrt{2}.$$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              You were very close, but you made a mistake. You should have
              $$frac{1}{1+tan^2 a}+frac{1}{1+tan^2b}geq frac{1}{tan c}$$
              instead. Here is a similar approach.



              First, we assume that $x,y,z>0$. So, we can define $p,q,rgeq 0$ to be $frac{sqrt{1-x^2}}{x}$, $frac{sqrt{1-y^2}}{y}$, and $frac{sqrt{1-z^2}}{z}$, respectively. The three inequalities become
              $$frac{1}{1+p^2}+frac{1}{1+q^2}geq frac1rwedge frac{1}{1+q^2}+frac{1}{1+r^2}geq frac1p wedge frac{1}{1+r^2}+frac{1}{1+p^2}geq frac1q.$$
              Adding all of these and then dividing the result by $2$ yield
              $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}geq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{1}$$
              However, by AM-GM, $1+p^2ge 2p$, $1+q^2ge 2q$, and $1+r^2ge 2r$. That is,
              $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}leq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{2}$$
              From (1) and (2), we must have
              $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}= frac{1}{2p}+frac{1}{2q}+frac{1}{2r},$$
              which implies $1+p^2=2p$, $1+q^2=2q$, $1+r^2=2r$, so $p=q=r=1$ and $x=y=z=frac1{sqrt{2}}$.



              Now, WLOG, if $x=0$, then $y^2sqrt{1-z^2}geq z$ and $z^2sqrt{1-y^2}geq y$. Multiplying the two inequalities gives
              $$y^2z^2sqrt{1-y^2}sqrt{1-z^2}geq yz.$$
              If $yzneq 0$, then dividing by $yz$, we have
              $$yzsqrt{1-y^2}sqrt{1-z^2}geq 1.$$
              But by AM-GM, $ysqrt{1-y^2}=sqrt{y^2(1-y^2)}leq frac{y^2+(1-y^2)}{2}=frac12$ and similarly, $zsqrt{1-z^2}leq frac12$. So,
              $$yzsqrt{1-y^2}sqrt{1-z^2}leq frac12cdotfrac12=frac14<1.$$
              This is a contradiction, so $yz=0$, so $y=0$ or $z=0$, so $x=y=z=0$. Therefore, if any of the variables is $0$, all of them are $0$. There are then two solutions $$x=y=z=0 wedge x=y=z=1/sqrt{2}.$$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                You were very close, but you made a mistake. You should have
                $$frac{1}{1+tan^2 a}+frac{1}{1+tan^2b}geq frac{1}{tan c}$$
                instead. Here is a similar approach.



                First, we assume that $x,y,z>0$. So, we can define $p,q,rgeq 0$ to be $frac{sqrt{1-x^2}}{x}$, $frac{sqrt{1-y^2}}{y}$, and $frac{sqrt{1-z^2}}{z}$, respectively. The three inequalities become
                $$frac{1}{1+p^2}+frac{1}{1+q^2}geq frac1rwedge frac{1}{1+q^2}+frac{1}{1+r^2}geq frac1p wedge frac{1}{1+r^2}+frac{1}{1+p^2}geq frac1q.$$
                Adding all of these and then dividing the result by $2$ yield
                $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}geq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{1}$$
                However, by AM-GM, $1+p^2ge 2p$, $1+q^2ge 2q$, and $1+r^2ge 2r$. That is,
                $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}leq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{2}$$
                From (1) and (2), we must have
                $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}= frac{1}{2p}+frac{1}{2q}+frac{1}{2r},$$
                which implies $1+p^2=2p$, $1+q^2=2q$, $1+r^2=2r$, so $p=q=r=1$ and $x=y=z=frac1{sqrt{2}}$.



                Now, WLOG, if $x=0$, then $y^2sqrt{1-z^2}geq z$ and $z^2sqrt{1-y^2}geq y$. Multiplying the two inequalities gives
                $$y^2z^2sqrt{1-y^2}sqrt{1-z^2}geq yz.$$
                If $yzneq 0$, then dividing by $yz$, we have
                $$yzsqrt{1-y^2}sqrt{1-z^2}geq 1.$$
                But by AM-GM, $ysqrt{1-y^2}=sqrt{y^2(1-y^2)}leq frac{y^2+(1-y^2)}{2}=frac12$ and similarly, $zsqrt{1-z^2}leq frac12$. So,
                $$yzsqrt{1-y^2}sqrt{1-z^2}leq frac12cdotfrac12=frac14<1.$$
                This is a contradiction, so $yz=0$, so $y=0$ or $z=0$, so $x=y=z=0$. Therefore, if any of the variables is $0$, all of them are $0$. There are then two solutions $$x=y=z=0 wedge x=y=z=1/sqrt{2}.$$






                share|cite|improve this answer









                $endgroup$



                You were very close, but you made a mistake. You should have
                $$frac{1}{1+tan^2 a}+frac{1}{1+tan^2b}geq frac{1}{tan c}$$
                instead. Here is a similar approach.



                First, we assume that $x,y,z>0$. So, we can define $p,q,rgeq 0$ to be $frac{sqrt{1-x^2}}{x}$, $frac{sqrt{1-y^2}}{y}$, and $frac{sqrt{1-z^2}}{z}$, respectively. The three inequalities become
                $$frac{1}{1+p^2}+frac{1}{1+q^2}geq frac1rwedge frac{1}{1+q^2}+frac{1}{1+r^2}geq frac1p wedge frac{1}{1+r^2}+frac{1}{1+p^2}geq frac1q.$$
                Adding all of these and then dividing the result by $2$ yield
                $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}geq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{1}$$
                However, by AM-GM, $1+p^2ge 2p$, $1+q^2ge 2q$, and $1+r^2ge 2r$. That is,
                $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}leq frac{1}{2p}+frac{1}{2q}+frac{1}{2r}.tag{2}$$
                From (1) and (2), we must have
                $$frac{1}{1+p^2}+frac{1}{1+q^2}+frac{1}{1+r^2}= frac{1}{2p}+frac{1}{2q}+frac{1}{2r},$$
                which implies $1+p^2=2p$, $1+q^2=2q$, $1+r^2=2r$, so $p=q=r=1$ and $x=y=z=frac1{sqrt{2}}$.



                Now, WLOG, if $x=0$, then $y^2sqrt{1-z^2}geq z$ and $z^2sqrt{1-y^2}geq y$. Multiplying the two inequalities gives
                $$y^2z^2sqrt{1-y^2}sqrt{1-z^2}geq yz.$$
                If $yzneq 0$, then dividing by $yz$, we have
                $$yzsqrt{1-y^2}sqrt{1-z^2}geq 1.$$
                But by AM-GM, $ysqrt{1-y^2}=sqrt{y^2(1-y^2)}leq frac{y^2+(1-y^2)}{2}=frac12$ and similarly, $zsqrt{1-z^2}leq frac12$. So,
                $$yzsqrt{1-y^2}sqrt{1-z^2}leq frac12cdotfrac12=frac14<1.$$
                This is a contradiction, so $yz=0$, so $y=0$ or $z=0$, so $x=y=z=0$. Therefore, if any of the variables is $0$, all of them are $0$. There are then two solutions $$x=y=z=0 wedge x=y=z=1/sqrt{2}.$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 23 '18 at 20:47







                user593746






























                    2












                    $begingroup$

                    The hint:
                    $$(x^2+y^2)sqrt{1-z^2}geq z$$ it's
                    $$(x^2+y^2)^2(1-z^2)geq z^2$$ or
                    $$(x^2+y^2)^2geq((x^2+y^2)^2+1)z^2,$$ which gives
                    $$z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$$
                    By the same way $$y^2leqfrac{x^2+z^2}{2}$$ and $$x^2leqfrac{y^2+z^2}{2},$$ which gives
                    $$x=y=z$$ and all inequalities the are equalities.






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
                      $endgroup$
                      – user600785
                      Nov 24 '18 at 10:16










                    • $begingroup$
                      @user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
                      $endgroup$
                      – Michael Rozenberg
                      Nov 24 '18 at 12:20


















                    2












                    $begingroup$

                    The hint:
                    $$(x^2+y^2)sqrt{1-z^2}geq z$$ it's
                    $$(x^2+y^2)^2(1-z^2)geq z^2$$ or
                    $$(x^2+y^2)^2geq((x^2+y^2)^2+1)z^2,$$ which gives
                    $$z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$$
                    By the same way $$y^2leqfrac{x^2+z^2}{2}$$ and $$x^2leqfrac{y^2+z^2}{2},$$ which gives
                    $$x=y=z$$ and all inequalities the are equalities.






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
                      $endgroup$
                      – user600785
                      Nov 24 '18 at 10:16










                    • $begingroup$
                      @user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
                      $endgroup$
                      – Michael Rozenberg
                      Nov 24 '18 at 12:20
















                    2












                    2








                    2





                    $begingroup$

                    The hint:
                    $$(x^2+y^2)sqrt{1-z^2}geq z$$ it's
                    $$(x^2+y^2)^2(1-z^2)geq z^2$$ or
                    $$(x^2+y^2)^2geq((x^2+y^2)^2+1)z^2,$$ which gives
                    $$z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$$
                    By the same way $$y^2leqfrac{x^2+z^2}{2}$$ and $$x^2leqfrac{y^2+z^2}{2},$$ which gives
                    $$x=y=z$$ and all inequalities the are equalities.






                    share|cite|improve this answer











                    $endgroup$



                    The hint:
                    $$(x^2+y^2)sqrt{1-z^2}geq z$$ it's
                    $$(x^2+y^2)^2(1-z^2)geq z^2$$ or
                    $$(x^2+y^2)^2geq((x^2+y^2)^2+1)z^2,$$ which gives
                    $$z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$$
                    By the same way $$y^2leqfrac{x^2+z^2}{2}$$ and $$x^2leqfrac{y^2+z^2}{2},$$ which gives
                    $$x=y=z$$ and all inequalities the are equalities.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Nov 24 '18 at 12:22

























                    answered Nov 23 '18 at 20:47









                    Michael RozenbergMichael Rozenberg

                    97.6k1589188




                    97.6k1589188












                    • $begingroup$
                      why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
                      $endgroup$
                      – user600785
                      Nov 24 '18 at 10:16










                    • $begingroup$
                      @user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
                      $endgroup$
                      – Michael Rozenberg
                      Nov 24 '18 at 12:20




















                    • $begingroup$
                      why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
                      $endgroup$
                      – user600785
                      Nov 24 '18 at 10:16










                    • $begingroup$
                      @user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
                      $endgroup$
                      – Michael Rozenberg
                      Nov 24 '18 at 12:20


















                    $begingroup$
                    why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
                    $endgroup$
                    – user600785
                    Nov 24 '18 at 10:16




                    $begingroup$
                    why it gives $z^2leqfrac{(x^2+y^2)^2}{(x^2+y^2)^2+1}leqfrac{(x^2+y^2)^2}{2(x^2+y^2)}=frac{x^2+y^2}{2}.$
                    $endgroup$
                    – user600785
                    Nov 24 '18 at 10:16












                    $begingroup$
                    @user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
                    $endgroup$
                    – Michael Rozenberg
                    Nov 24 '18 at 12:20






                    $begingroup$
                    @user600785 I used AM-GM: $(x^2+y^2)^2+1geq2sqrt{(x^2+y^2)^2cdot1}=2(x^2+y^2).$ See also my post, I added something.
                    $endgroup$
                    – Michael Rozenberg
                    Nov 24 '18 at 12:20




















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010735%2ffind-all-real-numbers-x-y-z-in-0-13-such-that-x2y2-sqrt1-z2-ge-z%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                    ComboBox Display Member on multiple fields

                    Is it possible to collect Nectar points via Trainline?