Eigenvalues and Eigenvectors of Sum of Symmetric Matrix












5














Question:



Let A = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}



Find all eigenvalues and eigenvectors of the martrix:



$$sum_{n=1}^{100} A^n = A^{100} +A^{99} +...+A^2+A$$



I know that the eigenvectors of A are begin{bmatrix} 1 \ 1 end{bmatrix} and begin{bmatrix} 1 \ -1 end{bmatrix}
But I do not see any sort of correlation with the sum term and A's eigenvectors.










share|cite|improve this question


















  • 3




    Try evaluating $(sum_{n=1}^{100} A^n) begin{bmatrix} 1 \ 1 end{bmatrix}$ and do the same with the other eigenvector. What happens?
    – Giuseppe Negro
    Dec 11 '18 at 19:24


















5














Question:



Let A = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}



Find all eigenvalues and eigenvectors of the martrix:



$$sum_{n=1}^{100} A^n = A^{100} +A^{99} +...+A^2+A$$



I know that the eigenvectors of A are begin{bmatrix} 1 \ 1 end{bmatrix} and begin{bmatrix} 1 \ -1 end{bmatrix}
But I do not see any sort of correlation with the sum term and A's eigenvectors.










share|cite|improve this question


















  • 3




    Try evaluating $(sum_{n=1}^{100} A^n) begin{bmatrix} 1 \ 1 end{bmatrix}$ and do the same with the other eigenvector. What happens?
    – Giuseppe Negro
    Dec 11 '18 at 19:24
















5












5








5


1





Question:



Let A = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}



Find all eigenvalues and eigenvectors of the martrix:



$$sum_{n=1}^{100} A^n = A^{100} +A^{99} +...+A^2+A$$



I know that the eigenvectors of A are begin{bmatrix} 1 \ 1 end{bmatrix} and begin{bmatrix} 1 \ -1 end{bmatrix}
But I do not see any sort of correlation with the sum term and A's eigenvectors.










share|cite|improve this question













Question:



Let A = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}



Find all eigenvalues and eigenvectors of the martrix:



$$sum_{n=1}^{100} A^n = A^{100} +A^{99} +...+A^2+A$$



I know that the eigenvectors of A are begin{bmatrix} 1 \ 1 end{bmatrix} and begin{bmatrix} 1 \ -1 end{bmatrix}
But I do not see any sort of correlation with the sum term and A's eigenvectors.







linear-algebra eigenvalues-eigenvectors symmetric-matrices






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 11 '18 at 19:13









mhall14

283




283








  • 3




    Try evaluating $(sum_{n=1}^{100} A^n) begin{bmatrix} 1 \ 1 end{bmatrix}$ and do the same with the other eigenvector. What happens?
    – Giuseppe Negro
    Dec 11 '18 at 19:24
















  • 3




    Try evaluating $(sum_{n=1}^{100} A^n) begin{bmatrix} 1 \ 1 end{bmatrix}$ and do the same with the other eigenvector. What happens?
    – Giuseppe Negro
    Dec 11 '18 at 19:24










3




3




Try evaluating $(sum_{n=1}^{100} A^n) begin{bmatrix} 1 \ 1 end{bmatrix}$ and do the same with the other eigenvector. What happens?
– Giuseppe Negro
Dec 11 '18 at 19:24






Try evaluating $(sum_{n=1}^{100} A^n) begin{bmatrix} 1 \ 1 end{bmatrix}$ and do the same with the other eigenvector. What happens?
– Giuseppe Negro
Dec 11 '18 at 19:24












6 Answers
6






active

oldest

votes


















2














Hint: If $$A = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}$$then we have $$A^2 = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}=begin{bmatrix} 2 & 2 \ 2 & 2 \ end{bmatrix}\A^3=begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 2&2 \ 2&2 \ end{bmatrix}=begin{bmatrix} 4&4 \ 4&4 \ end{bmatrix}\A^4=begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 4&4 \ 4&4 \ end{bmatrix}=begin{bmatrix}8&8 \ 8&8 \ end{bmatrix}\.\.\.\.$$and you can prove by induction that $$A^k=begin{bmatrix} 2^{k-1}&2^{k-1} \ 2^{k-1}&2^{k-1}\ end{bmatrix}$$can you finish now?






share|cite|improve this answer





























    3














    By linearity, given any polynomial $p$ and matrix $A$, the eigenvectors of $p(A)$ are the same as the eigenvectors of $A$, and the associated eigenvalues are $p(lambda)$; see this question.



    For instance, in this case, if $Av=lambda v$, then $A^nv=lambda^nv$, and $(sum_{n=1}^{100}A^n)v=sum_{n=1}^{100}(A^nv )=sum_{n=1}^{100}(lambda^nv)=(sum_{n=1}^{100}lambda^n)v$. Thus, $v$ is an eigenvector with eigenvalue $sum_{n=1}^{100}lambda^n$. $A$ has eigenvectors, eigenvalues of $v=begin{bmatrix} 1 \ 1 end{bmatrix} $ $lambda=2$ and $v=begin{bmatrix} 1 \ -1 end{bmatrix} $ $lambda=0$. $p(2)$ is a geometric series, so it is $2^{101}-1$. $p(0)$ is just zero. So $p(A)$ has eigenvectors, eigenvalues of $v=begin{bmatrix} 1 \ 1 end{bmatrix} $ $lambda=2^{101}-1$ and $v=begin{bmatrix} 1 \ -1 end{bmatrix} $ $lambda=0$






    share|cite|improve this answer





















    • This is the simplest way to go.
      – Giuseppe Negro
      Dec 12 '18 at 22:14



















    1














    Hint :



    Recall the Cayley-Hamilton Theorem (by Wikipedia) :




    For a general n×n invertible matrix $A$, i.e., one with nonzero determinant, $A^{−1}$ can thus be written as an $(n − 1)$-th order polynomial expression in $A$: As indicated, the Cayley–Hamilton theorem amounts to the identity :
    $$p(A) = A^n + c_{n-1}A^{n-1} + dots + cA + (-1)^ndet(A)I_n = O$$
    The coefficients ci are given by the elementary symmetric polynomials of the eigenvalues of $A$. Using Newton identities, the elementary symmetric polynomials can in turn be expressed in terms of power sum symmetric polynomials of the eigenvalues:
    $$s_k = sum_{i=1}^n lambda_i^k = text{tr}(A^k)$$







    share|cite|improve this answer





























      1














      You can explicitly compute $sum_{i=1}^{100}A^i$. First diagonalize $A$, namely rewrite $A$ as $A=PDP^{-1}$.



      Now
      begin{align}
      sum_{i=1}^{100}A^i&=sum_{i=1}^{100}PD^iP^{-1}\&=Pleft(sum_{i=1}^{100} D^iright)P^{-1}
      end{align}



      Notice that
      $$(D-I)left(sum_{i=1}^{100}D^iright)=D^{101}-I.$$
      SInce $D-I$ is invertible (you can check it)
      $$sum_{i=1}^{100}D^i=(D-I)^{-1}(D^{101}-I).$$
      Therefore
      $$sum_{i=1}^{100}A^i=P(D-I)^{-1}(D^{101}-I)P^{-1}.$$






      share|cite|improve this answer





























        1














        It is easy to prove that for $kin Bbb{N},$ $$A^k=begin{bmatrix} 2^{k-1} & 2^{k-1} \ 2^{k-1} & 2^{k-1} \ end{bmatrix}.$$ The sum is
        $$Sigma=begin{bmatrix} 2^{100}-1 & 2^{100}-1 \ 2^{100}-1 & 2^{100}-1 \ end{bmatrix},$$ from where the eigenvalues $0$ and $(2^{101}-2).$



        Each matrix $A^k, k=1,dots,100$ has eigenvalues $0$ and $2^k,$ the corresponding eigenvectors are those of $A:$ $(1,-1)^T, (1,1)^T.$

        Thus $(1,-1)^T, (1,1)^T$ are eigenvectors of $Sigma.$






        share|cite|improve this answer































          0














          Since you have 2 linear independent eigenvectors, $A$ is diagonalizable. You may find useful to replace $A$ in your polynomial expression by its diagonalization because this will simplify the operations you need to do.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035684%2feigenvalues-and-eigenvectors-of-sum-of-symmetric-matrix%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            6 Answers
            6






            active

            oldest

            votes








            6 Answers
            6






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            Hint: If $$A = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}$$then we have $$A^2 = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}=begin{bmatrix} 2 & 2 \ 2 & 2 \ end{bmatrix}\A^3=begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 2&2 \ 2&2 \ end{bmatrix}=begin{bmatrix} 4&4 \ 4&4 \ end{bmatrix}\A^4=begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 4&4 \ 4&4 \ end{bmatrix}=begin{bmatrix}8&8 \ 8&8 \ end{bmatrix}\.\.\.\.$$and you can prove by induction that $$A^k=begin{bmatrix} 2^{k-1}&2^{k-1} \ 2^{k-1}&2^{k-1}\ end{bmatrix}$$can you finish now?






            share|cite|improve this answer


























              2














              Hint: If $$A = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}$$then we have $$A^2 = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}=begin{bmatrix} 2 & 2 \ 2 & 2 \ end{bmatrix}\A^3=begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 2&2 \ 2&2 \ end{bmatrix}=begin{bmatrix} 4&4 \ 4&4 \ end{bmatrix}\A^4=begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 4&4 \ 4&4 \ end{bmatrix}=begin{bmatrix}8&8 \ 8&8 \ end{bmatrix}\.\.\.\.$$and you can prove by induction that $$A^k=begin{bmatrix} 2^{k-1}&2^{k-1} \ 2^{k-1}&2^{k-1}\ end{bmatrix}$$can you finish now?






              share|cite|improve this answer
























                2












                2








                2






                Hint: If $$A = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}$$then we have $$A^2 = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}=begin{bmatrix} 2 & 2 \ 2 & 2 \ end{bmatrix}\A^3=begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 2&2 \ 2&2 \ end{bmatrix}=begin{bmatrix} 4&4 \ 4&4 \ end{bmatrix}\A^4=begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 4&4 \ 4&4 \ end{bmatrix}=begin{bmatrix}8&8 \ 8&8 \ end{bmatrix}\.\.\.\.$$and you can prove by induction that $$A^k=begin{bmatrix} 2^{k-1}&2^{k-1} \ 2^{k-1}&2^{k-1}\ end{bmatrix}$$can you finish now?






                share|cite|improve this answer












                Hint: If $$A = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}$$then we have $$A^2 = begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}=begin{bmatrix} 2 & 2 \ 2 & 2 \ end{bmatrix}\A^3=begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 2&2 \ 2&2 \ end{bmatrix}=begin{bmatrix} 4&4 \ 4&4 \ end{bmatrix}\A^4=begin{bmatrix} 1 & 1 \ 1 & 1 \ end{bmatrix}begin{bmatrix} 4&4 \ 4&4 \ end{bmatrix}=begin{bmatrix}8&8 \ 8&8 \ end{bmatrix}\.\.\.\.$$and you can prove by induction that $$A^k=begin{bmatrix} 2^{k-1}&2^{k-1} \ 2^{k-1}&2^{k-1}\ end{bmatrix}$$can you finish now?







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 11 '18 at 19:27









                Mostafa Ayaz

                13.6k3836




                13.6k3836























                    3














                    By linearity, given any polynomial $p$ and matrix $A$, the eigenvectors of $p(A)$ are the same as the eigenvectors of $A$, and the associated eigenvalues are $p(lambda)$; see this question.



                    For instance, in this case, if $Av=lambda v$, then $A^nv=lambda^nv$, and $(sum_{n=1}^{100}A^n)v=sum_{n=1}^{100}(A^nv )=sum_{n=1}^{100}(lambda^nv)=(sum_{n=1}^{100}lambda^n)v$. Thus, $v$ is an eigenvector with eigenvalue $sum_{n=1}^{100}lambda^n$. $A$ has eigenvectors, eigenvalues of $v=begin{bmatrix} 1 \ 1 end{bmatrix} $ $lambda=2$ and $v=begin{bmatrix} 1 \ -1 end{bmatrix} $ $lambda=0$. $p(2)$ is a geometric series, so it is $2^{101}-1$. $p(0)$ is just zero. So $p(A)$ has eigenvectors, eigenvalues of $v=begin{bmatrix} 1 \ 1 end{bmatrix} $ $lambda=2^{101}-1$ and $v=begin{bmatrix} 1 \ -1 end{bmatrix} $ $lambda=0$






                    share|cite|improve this answer





















                    • This is the simplest way to go.
                      – Giuseppe Negro
                      Dec 12 '18 at 22:14
















                    3














                    By linearity, given any polynomial $p$ and matrix $A$, the eigenvectors of $p(A)$ are the same as the eigenvectors of $A$, and the associated eigenvalues are $p(lambda)$; see this question.



                    For instance, in this case, if $Av=lambda v$, then $A^nv=lambda^nv$, and $(sum_{n=1}^{100}A^n)v=sum_{n=1}^{100}(A^nv )=sum_{n=1}^{100}(lambda^nv)=(sum_{n=1}^{100}lambda^n)v$. Thus, $v$ is an eigenvector with eigenvalue $sum_{n=1}^{100}lambda^n$. $A$ has eigenvectors, eigenvalues of $v=begin{bmatrix} 1 \ 1 end{bmatrix} $ $lambda=2$ and $v=begin{bmatrix} 1 \ -1 end{bmatrix} $ $lambda=0$. $p(2)$ is a geometric series, so it is $2^{101}-1$. $p(0)$ is just zero. So $p(A)$ has eigenvectors, eigenvalues of $v=begin{bmatrix} 1 \ 1 end{bmatrix} $ $lambda=2^{101}-1$ and $v=begin{bmatrix} 1 \ -1 end{bmatrix} $ $lambda=0$






                    share|cite|improve this answer





















                    • This is the simplest way to go.
                      – Giuseppe Negro
                      Dec 12 '18 at 22:14














                    3












                    3








                    3






                    By linearity, given any polynomial $p$ and matrix $A$, the eigenvectors of $p(A)$ are the same as the eigenvectors of $A$, and the associated eigenvalues are $p(lambda)$; see this question.



                    For instance, in this case, if $Av=lambda v$, then $A^nv=lambda^nv$, and $(sum_{n=1}^{100}A^n)v=sum_{n=1}^{100}(A^nv )=sum_{n=1}^{100}(lambda^nv)=(sum_{n=1}^{100}lambda^n)v$. Thus, $v$ is an eigenvector with eigenvalue $sum_{n=1}^{100}lambda^n$. $A$ has eigenvectors, eigenvalues of $v=begin{bmatrix} 1 \ 1 end{bmatrix} $ $lambda=2$ and $v=begin{bmatrix} 1 \ -1 end{bmatrix} $ $lambda=0$. $p(2)$ is a geometric series, so it is $2^{101}-1$. $p(0)$ is just zero. So $p(A)$ has eigenvectors, eigenvalues of $v=begin{bmatrix} 1 \ 1 end{bmatrix} $ $lambda=2^{101}-1$ and $v=begin{bmatrix} 1 \ -1 end{bmatrix} $ $lambda=0$






                    share|cite|improve this answer












                    By linearity, given any polynomial $p$ and matrix $A$, the eigenvectors of $p(A)$ are the same as the eigenvectors of $A$, and the associated eigenvalues are $p(lambda)$; see this question.



                    For instance, in this case, if $Av=lambda v$, then $A^nv=lambda^nv$, and $(sum_{n=1}^{100}A^n)v=sum_{n=1}^{100}(A^nv )=sum_{n=1}^{100}(lambda^nv)=(sum_{n=1}^{100}lambda^n)v$. Thus, $v$ is an eigenvector with eigenvalue $sum_{n=1}^{100}lambda^n$. $A$ has eigenvectors, eigenvalues of $v=begin{bmatrix} 1 \ 1 end{bmatrix} $ $lambda=2$ and $v=begin{bmatrix} 1 \ -1 end{bmatrix} $ $lambda=0$. $p(2)$ is a geometric series, so it is $2^{101}-1$. $p(0)$ is just zero. So $p(A)$ has eigenvectors, eigenvalues of $v=begin{bmatrix} 1 \ 1 end{bmatrix} $ $lambda=2^{101}-1$ and $v=begin{bmatrix} 1 \ -1 end{bmatrix} $ $lambda=0$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 11 '18 at 22:46









                    Acccumulation

                    6,7962617




                    6,7962617












                    • This is the simplest way to go.
                      – Giuseppe Negro
                      Dec 12 '18 at 22:14


















                    • This is the simplest way to go.
                      – Giuseppe Negro
                      Dec 12 '18 at 22:14
















                    This is the simplest way to go.
                    – Giuseppe Negro
                    Dec 12 '18 at 22:14




                    This is the simplest way to go.
                    – Giuseppe Negro
                    Dec 12 '18 at 22:14











                    1














                    Hint :



                    Recall the Cayley-Hamilton Theorem (by Wikipedia) :




                    For a general n×n invertible matrix $A$, i.e., one with nonzero determinant, $A^{−1}$ can thus be written as an $(n − 1)$-th order polynomial expression in $A$: As indicated, the Cayley–Hamilton theorem amounts to the identity :
                    $$p(A) = A^n + c_{n-1}A^{n-1} + dots + cA + (-1)^ndet(A)I_n = O$$
                    The coefficients ci are given by the elementary symmetric polynomials of the eigenvalues of $A$. Using Newton identities, the elementary symmetric polynomials can in turn be expressed in terms of power sum symmetric polynomials of the eigenvalues:
                    $$s_k = sum_{i=1}^n lambda_i^k = text{tr}(A^k)$$







                    share|cite|improve this answer


























                      1














                      Hint :



                      Recall the Cayley-Hamilton Theorem (by Wikipedia) :




                      For a general n×n invertible matrix $A$, i.e., one with nonzero determinant, $A^{−1}$ can thus be written as an $(n − 1)$-th order polynomial expression in $A$: As indicated, the Cayley–Hamilton theorem amounts to the identity :
                      $$p(A) = A^n + c_{n-1}A^{n-1} + dots + cA + (-1)^ndet(A)I_n = O$$
                      The coefficients ci are given by the elementary symmetric polynomials of the eigenvalues of $A$. Using Newton identities, the elementary symmetric polynomials can in turn be expressed in terms of power sum symmetric polynomials of the eigenvalues:
                      $$s_k = sum_{i=1}^n lambda_i^k = text{tr}(A^k)$$







                      share|cite|improve this answer
























                        1












                        1








                        1






                        Hint :



                        Recall the Cayley-Hamilton Theorem (by Wikipedia) :




                        For a general n×n invertible matrix $A$, i.e., one with nonzero determinant, $A^{−1}$ can thus be written as an $(n − 1)$-th order polynomial expression in $A$: As indicated, the Cayley–Hamilton theorem amounts to the identity :
                        $$p(A) = A^n + c_{n-1}A^{n-1} + dots + cA + (-1)^ndet(A)I_n = O$$
                        The coefficients ci are given by the elementary symmetric polynomials of the eigenvalues of $A$. Using Newton identities, the elementary symmetric polynomials can in turn be expressed in terms of power sum symmetric polynomials of the eigenvalues:
                        $$s_k = sum_{i=1}^n lambda_i^k = text{tr}(A^k)$$







                        share|cite|improve this answer












                        Hint :



                        Recall the Cayley-Hamilton Theorem (by Wikipedia) :




                        For a general n×n invertible matrix $A$, i.e., one with nonzero determinant, $A^{−1}$ can thus be written as an $(n − 1)$-th order polynomial expression in $A$: As indicated, the Cayley–Hamilton theorem amounts to the identity :
                        $$p(A) = A^n + c_{n-1}A^{n-1} + dots + cA + (-1)^ndet(A)I_n = O$$
                        The coefficients ci are given by the elementary symmetric polynomials of the eigenvalues of $A$. Using Newton identities, the elementary symmetric polynomials can in turn be expressed in terms of power sum symmetric polynomials of the eigenvalues:
                        $$s_k = sum_{i=1}^n lambda_i^k = text{tr}(A^k)$$








                        share|cite|improve this answer












                        share|cite|improve this answer



                        share|cite|improve this answer










                        answered Dec 11 '18 at 19:20









                        Rebellos

                        14.4k31245




                        14.4k31245























                            1














                            You can explicitly compute $sum_{i=1}^{100}A^i$. First diagonalize $A$, namely rewrite $A$ as $A=PDP^{-1}$.



                            Now
                            begin{align}
                            sum_{i=1}^{100}A^i&=sum_{i=1}^{100}PD^iP^{-1}\&=Pleft(sum_{i=1}^{100} D^iright)P^{-1}
                            end{align}



                            Notice that
                            $$(D-I)left(sum_{i=1}^{100}D^iright)=D^{101}-I.$$
                            SInce $D-I$ is invertible (you can check it)
                            $$sum_{i=1}^{100}D^i=(D-I)^{-1}(D^{101}-I).$$
                            Therefore
                            $$sum_{i=1}^{100}A^i=P(D-I)^{-1}(D^{101}-I)P^{-1}.$$






                            share|cite|improve this answer


























                              1














                              You can explicitly compute $sum_{i=1}^{100}A^i$. First diagonalize $A$, namely rewrite $A$ as $A=PDP^{-1}$.



                              Now
                              begin{align}
                              sum_{i=1}^{100}A^i&=sum_{i=1}^{100}PD^iP^{-1}\&=Pleft(sum_{i=1}^{100} D^iright)P^{-1}
                              end{align}



                              Notice that
                              $$(D-I)left(sum_{i=1}^{100}D^iright)=D^{101}-I.$$
                              SInce $D-I$ is invertible (you can check it)
                              $$sum_{i=1}^{100}D^i=(D-I)^{-1}(D^{101}-I).$$
                              Therefore
                              $$sum_{i=1}^{100}A^i=P(D-I)^{-1}(D^{101}-I)P^{-1}.$$






                              share|cite|improve this answer
























                                1












                                1








                                1






                                You can explicitly compute $sum_{i=1}^{100}A^i$. First diagonalize $A$, namely rewrite $A$ as $A=PDP^{-1}$.



                                Now
                                begin{align}
                                sum_{i=1}^{100}A^i&=sum_{i=1}^{100}PD^iP^{-1}\&=Pleft(sum_{i=1}^{100} D^iright)P^{-1}
                                end{align}



                                Notice that
                                $$(D-I)left(sum_{i=1}^{100}D^iright)=D^{101}-I.$$
                                SInce $D-I$ is invertible (you can check it)
                                $$sum_{i=1}^{100}D^i=(D-I)^{-1}(D^{101}-I).$$
                                Therefore
                                $$sum_{i=1}^{100}A^i=P(D-I)^{-1}(D^{101}-I)P^{-1}.$$






                                share|cite|improve this answer












                                You can explicitly compute $sum_{i=1}^{100}A^i$. First diagonalize $A$, namely rewrite $A$ as $A=PDP^{-1}$.



                                Now
                                begin{align}
                                sum_{i=1}^{100}A^i&=sum_{i=1}^{100}PD^iP^{-1}\&=Pleft(sum_{i=1}^{100} D^iright)P^{-1}
                                end{align}



                                Notice that
                                $$(D-I)left(sum_{i=1}^{100}D^iright)=D^{101}-I.$$
                                SInce $D-I$ is invertible (you can check it)
                                $$sum_{i=1}^{100}D^i=(D-I)^{-1}(D^{101}-I).$$
                                Therefore
                                $$sum_{i=1}^{100}A^i=P(D-I)^{-1}(D^{101}-I)P^{-1}.$$







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Dec 11 '18 at 19:37









                                user9077

                                1,279612




                                1,279612























                                    1














                                    It is easy to prove that for $kin Bbb{N},$ $$A^k=begin{bmatrix} 2^{k-1} & 2^{k-1} \ 2^{k-1} & 2^{k-1} \ end{bmatrix}.$$ The sum is
                                    $$Sigma=begin{bmatrix} 2^{100}-1 & 2^{100}-1 \ 2^{100}-1 & 2^{100}-1 \ end{bmatrix},$$ from where the eigenvalues $0$ and $(2^{101}-2).$



                                    Each matrix $A^k, k=1,dots,100$ has eigenvalues $0$ and $2^k,$ the corresponding eigenvectors are those of $A:$ $(1,-1)^T, (1,1)^T.$

                                    Thus $(1,-1)^T, (1,1)^T$ are eigenvectors of $Sigma.$






                                    share|cite|improve this answer




























                                      1














                                      It is easy to prove that for $kin Bbb{N},$ $$A^k=begin{bmatrix} 2^{k-1} & 2^{k-1} \ 2^{k-1} & 2^{k-1} \ end{bmatrix}.$$ The sum is
                                      $$Sigma=begin{bmatrix} 2^{100}-1 & 2^{100}-1 \ 2^{100}-1 & 2^{100}-1 \ end{bmatrix},$$ from where the eigenvalues $0$ and $(2^{101}-2).$



                                      Each matrix $A^k, k=1,dots,100$ has eigenvalues $0$ and $2^k,$ the corresponding eigenvectors are those of $A:$ $(1,-1)^T, (1,1)^T.$

                                      Thus $(1,-1)^T, (1,1)^T$ are eigenvectors of $Sigma.$






                                      share|cite|improve this answer


























                                        1












                                        1








                                        1






                                        It is easy to prove that for $kin Bbb{N},$ $$A^k=begin{bmatrix} 2^{k-1} & 2^{k-1} \ 2^{k-1} & 2^{k-1} \ end{bmatrix}.$$ The sum is
                                        $$Sigma=begin{bmatrix} 2^{100}-1 & 2^{100}-1 \ 2^{100}-1 & 2^{100}-1 \ end{bmatrix},$$ from where the eigenvalues $0$ and $(2^{101}-2).$



                                        Each matrix $A^k, k=1,dots,100$ has eigenvalues $0$ and $2^k,$ the corresponding eigenvectors are those of $A:$ $(1,-1)^T, (1,1)^T.$

                                        Thus $(1,-1)^T, (1,1)^T$ are eigenvectors of $Sigma.$






                                        share|cite|improve this answer














                                        It is easy to prove that for $kin Bbb{N},$ $$A^k=begin{bmatrix} 2^{k-1} & 2^{k-1} \ 2^{k-1} & 2^{k-1} \ end{bmatrix}.$$ The sum is
                                        $$Sigma=begin{bmatrix} 2^{100}-1 & 2^{100}-1 \ 2^{100}-1 & 2^{100}-1 \ end{bmatrix},$$ from where the eigenvalues $0$ and $(2^{101}-2).$



                                        Each matrix $A^k, k=1,dots,100$ has eigenvalues $0$ and $2^k,$ the corresponding eigenvectors are those of $A:$ $(1,-1)^T, (1,1)^T.$

                                        Thus $(1,-1)^T, (1,1)^T$ are eigenvectors of $Sigma.$







                                        share|cite|improve this answer














                                        share|cite|improve this answer



                                        share|cite|improve this answer








                                        edited Dec 11 '18 at 23:13

























                                        answered Dec 11 '18 at 19:55









                                        user376343

                                        2,8382822




                                        2,8382822























                                            0














                                            Since you have 2 linear independent eigenvectors, $A$ is diagonalizable. You may find useful to replace $A$ in your polynomial expression by its diagonalization because this will simplify the operations you need to do.






                                            share|cite|improve this answer


























                                              0














                                              Since you have 2 linear independent eigenvectors, $A$ is diagonalizable. You may find useful to replace $A$ in your polynomial expression by its diagonalization because this will simplify the operations you need to do.






                                              share|cite|improve this answer
























                                                0












                                                0








                                                0






                                                Since you have 2 linear independent eigenvectors, $A$ is diagonalizable. You may find useful to replace $A$ in your polynomial expression by its diagonalization because this will simplify the operations you need to do.






                                                share|cite|improve this answer












                                                Since you have 2 linear independent eigenvectors, $A$ is diagonalizable. You may find useful to replace $A$ in your polynomial expression by its diagonalization because this will simplify the operations you need to do.







                                                share|cite|improve this answer












                                                share|cite|improve this answer



                                                share|cite|improve this answer










                                                answered Dec 11 '18 at 19:23









                                                Javi

                                                3829




                                                3829






























                                                    draft saved

                                                    draft discarded




















































                                                    Thanks for contributing an answer to Mathematics Stack Exchange!


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    Use MathJax to format equations. MathJax reference.


                                                    To learn more, see our tips on writing great answers.





                                                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                                    Please pay close attention to the following guidance:


                                                    • Please be sure to answer the question. Provide details and share your research!

                                                    But avoid



                                                    • Asking for help, clarification, or responding to other answers.

                                                    • Making statements based on opinion; back them up with references or personal experience.


                                                    To learn more, see our tips on writing great answers.




                                                    draft saved


                                                    draft discarded














                                                    StackExchange.ready(
                                                    function () {
                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035684%2feigenvalues-and-eigenvectors-of-sum-of-symmetric-matrix%23new-answer', 'question_page');
                                                    }
                                                    );

                                                    Post as a guest















                                                    Required, but never shown





















































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown

































                                                    Required, but never shown














                                                    Required, but never shown












                                                    Required, but never shown







                                                    Required, but never shown







                                                    Popular posts from this blog

                                                    Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                                                    ComboBox Display Member on multiple fields

                                                    Is it possible to collect Nectar points via Trainline?