Problem 4 Barry Simon a comprehensive course in analysis part 1.











up vote
1
down vote

favorite












(a) For any bounded Baire function, $f$, on a compact Hausdorff space $X$, prove that $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists, defines a seminorm, and equals $sup_{x} |f(x)|$ if $fin C(X)$. Prove that



$||f||_{infty}=supleft{a:mu(left{x:|f(x)|>aright})>0right}$



(b) For any bounded Baire function $f$ and any $mu_{l}$ for normalized positive functional $l$, we have that



$|l(f)|leq ||f||_{infty}$



(c) If $f_n,f$ are Bounded Baire functions and $||f_n-f||_{infty}to 0$, prov that $l(f)to l(f_n)$.



For b) I have: $|f|leq |f|_{infty}$ then $|l(f)|leq l(|f|)leq ||f||_{infty}l(1)=||f||_{infty}$ because $l$ is normalized.



For c) I have, Using (b), $|l(f-f_n)|leq ||f-f_n||_{infty}to 0 $



How prove $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists? Some hint?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    (a) For any bounded Baire function, $f$, on a compact Hausdorff space $X$, prove that $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists, defines a seminorm, and equals $sup_{x} |f(x)|$ if $fin C(X)$. Prove that



    $||f||_{infty}=supleft{a:mu(left{x:|f(x)|>aright})>0right}$



    (b) For any bounded Baire function $f$ and any $mu_{l}$ for normalized positive functional $l$, we have that



    $|l(f)|leq ||f||_{infty}$



    (c) If $f_n,f$ are Bounded Baire functions and $||f_n-f||_{infty}to 0$, prov that $l(f)to l(f_n)$.



    For b) I have: $|f|leq |f|_{infty}$ then $|l(f)|leq l(|f|)leq ||f||_{infty}l(1)=||f||_{infty}$ because $l$ is normalized.



    For c) I have, Using (b), $|l(f-f_n)|leq ||f-f_n||_{infty}to 0 $



    How prove $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists? Some hint?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      (a) For any bounded Baire function, $f$, on a compact Hausdorff space $X$, prove that $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists, defines a seminorm, and equals $sup_{x} |f(x)|$ if $fin C(X)$. Prove that



      $||f||_{infty}=supleft{a:mu(left{x:|f(x)|>aright})>0right}$



      (b) For any bounded Baire function $f$ and any $mu_{l}$ for normalized positive functional $l$, we have that



      $|l(f)|leq ||f||_{infty}$



      (c) If $f_n,f$ are Bounded Baire functions and $||f_n-f||_{infty}to 0$, prov that $l(f)to l(f_n)$.



      For b) I have: $|f|leq |f|_{infty}$ then $|l(f)|leq l(|f|)leq ||f||_{infty}l(1)=||f||_{infty}$ because $l$ is normalized.



      For c) I have, Using (b), $|l(f-f_n)|leq ||f-f_n||_{infty}to 0 $



      How prove $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists? Some hint?










      share|cite|improve this question















      (a) For any bounded Baire function, $f$, on a compact Hausdorff space $X$, prove that $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists, defines a seminorm, and equals $sup_{x} |f(x)|$ if $fin C(X)$. Prove that



      $||f||_{infty}=supleft{a:mu(left{x:|f(x)|>aright})>0right}$



      (b) For any bounded Baire function $f$ and any $mu_{l}$ for normalized positive functional $l$, we have that



      $|l(f)|leq ||f||_{infty}$



      (c) If $f_n,f$ are Bounded Baire functions and $||f_n-f||_{infty}to 0$, prov that $l(f)to l(f_n)$.



      For b) I have: $|f|leq |f|_{infty}$ then $|l(f)|leq l(|f|)leq ||f||_{infty}l(1)=||f||_{infty}$ because $l$ is normalized.



      For c) I have, Using (b), $|l(f-f_n)|leq ||f-f_n||_{infty}to 0 $



      How prove $||f||_{infty}:=infleft{sup_x |g(x)|: f-g=0text{ for a.e. } xright}$ exists? Some hint?







      functional-analysis analysis measure-theory baire-category






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 14 at 13:36









      Davide Giraudo

      123k16149253




      123k16149253










      asked Nov 13 at 1:50









      eraldcoil

      21519




      21519






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote













          It is obvious that $f=g$ a.e. implies $|f(y)| leq sup_x|g(x)|$ a.e. so $|f(y)| leq RHS$ a.e. Hence LHS $leq $RHS. On the other hand if $g(x)=f(x)$ when $|f(x)| leq |f|_{infty}$ and $0$ otherwise then $f=g$ a.e. and $sup_x|g(x)| leq |f|_{infty}$ so RHS $leq$ LHS.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996172%2fproblem-4-barry-simon-a-comprehensive-course-in-analysis-part-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            2
            down vote













            It is obvious that $f=g$ a.e. implies $|f(y)| leq sup_x|g(x)|$ a.e. so $|f(y)| leq RHS$ a.e. Hence LHS $leq $RHS. On the other hand if $g(x)=f(x)$ when $|f(x)| leq |f|_{infty}$ and $0$ otherwise then $f=g$ a.e. and $sup_x|g(x)| leq |f|_{infty}$ so RHS $leq$ LHS.






            share|cite|improve this answer

























              up vote
              2
              down vote













              It is obvious that $f=g$ a.e. implies $|f(y)| leq sup_x|g(x)|$ a.e. so $|f(y)| leq RHS$ a.e. Hence LHS $leq $RHS. On the other hand if $g(x)=f(x)$ when $|f(x)| leq |f|_{infty}$ and $0$ otherwise then $f=g$ a.e. and $sup_x|g(x)| leq |f|_{infty}$ so RHS $leq$ LHS.






              share|cite|improve this answer























                up vote
                2
                down vote










                up vote
                2
                down vote









                It is obvious that $f=g$ a.e. implies $|f(y)| leq sup_x|g(x)|$ a.e. so $|f(y)| leq RHS$ a.e. Hence LHS $leq $RHS. On the other hand if $g(x)=f(x)$ when $|f(x)| leq |f|_{infty}$ and $0$ otherwise then $f=g$ a.e. and $sup_x|g(x)| leq |f|_{infty}$ so RHS $leq$ LHS.






                share|cite|improve this answer












                It is obvious that $f=g$ a.e. implies $|f(y)| leq sup_x|g(x)|$ a.e. so $|f(y)| leq RHS$ a.e. Hence LHS $leq $RHS. On the other hand if $g(x)=f(x)$ when $|f(x)| leq |f|_{infty}$ and $0$ otherwise then $f=g$ a.e. and $sup_x|g(x)| leq |f|_{infty}$ so RHS $leq$ LHS.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 13 at 5:25









                Kavi Rama Murthy

                40.4k31751




                40.4k31751






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996172%2fproblem-4-barry-simon-a-comprehensive-course-in-analysis-part-1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                    ComboBox Display Member on multiple fields

                    Is it possible to collect Nectar points via Trainline?