Number of random walks starting from $0$











up vote
0
down vote

favorite












Find a number of paths in random walk from $S_0=0$ to $S_{8n}=0$ satisfying the following terms:



(a) $S_k le -2$ for $2 le k le 4n-2$



(b) $S_k > 0$ for $4n le k le 8n$





Theorem: Let $S_0=a$ and $S_n=b$. $N_n(a,b)$ is the number of paths such that $S_0=a$ and $S_n=b$. If $b>0$ then the number of paths satisfying the following terms: 1) $S_0=0$ and $S_n=b$, 2) there doesn't exist $k in {{1,...,n-1}}$ that $S_k=0$, is equal to $frac bn N_n(0,b)$,



where $N_n(a,b) = binom{n}{1/2(n+b-a)}$.



I'm going to use homogeneity in time and in space (random walk properties).



(I don't want to use Catalan numbers in this exercise or any other "proven formulas".)





(a) $S_0=0, S_1=-1, S_2=-2,..., S_{4n-2}=-2$ for $S_k le -2$



then $S_2=0$ and $S_{4n-2}=0$ for $S_k le 0$



and $S_2=0$ ; $S_{4n-2}=0$ for $S_k ge 0$ (symmetry)



so $S_2=0$ ; $S_{4n-1}=1$ for $S_k > 0, ;;3 le k le 4n-1$



and from that $frac bnN_n(0,b)=frac{1}{4n-3} binom{4n-3}{1/2(4n-3+1-0)}=frac{1}{4n-3} binom{4n-3}{2n-1}$



(b)$S_{4n}=0, S_{8n-1}=1$, so $frac bnN_n(0,b)=frac{1}{4n-1} binom{4n-1}{2n}$



Is it a proper usage of the theorem mentioned above? I know how to use it when $S_k> or < ...$, but I'm not sure if I can "transform it" like that when $S_k le or ge ...$.



Please, correct me where I'm wrong or just tell me any tips. Will be grateful for any help.










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    Find a number of paths in random walk from $S_0=0$ to $S_{8n}=0$ satisfying the following terms:



    (a) $S_k le -2$ for $2 le k le 4n-2$



    (b) $S_k > 0$ for $4n le k le 8n$





    Theorem: Let $S_0=a$ and $S_n=b$. $N_n(a,b)$ is the number of paths such that $S_0=a$ and $S_n=b$. If $b>0$ then the number of paths satisfying the following terms: 1) $S_0=0$ and $S_n=b$, 2) there doesn't exist $k in {{1,...,n-1}}$ that $S_k=0$, is equal to $frac bn N_n(0,b)$,



    where $N_n(a,b) = binom{n}{1/2(n+b-a)}$.



    I'm going to use homogeneity in time and in space (random walk properties).



    (I don't want to use Catalan numbers in this exercise or any other "proven formulas".)





    (a) $S_0=0, S_1=-1, S_2=-2,..., S_{4n-2}=-2$ for $S_k le -2$



    then $S_2=0$ and $S_{4n-2}=0$ for $S_k le 0$



    and $S_2=0$ ; $S_{4n-2}=0$ for $S_k ge 0$ (symmetry)



    so $S_2=0$ ; $S_{4n-1}=1$ for $S_k > 0, ;;3 le k le 4n-1$



    and from that $frac bnN_n(0,b)=frac{1}{4n-3} binom{4n-3}{1/2(4n-3+1-0)}=frac{1}{4n-3} binom{4n-3}{2n-1}$



    (b)$S_{4n}=0, S_{8n-1}=1$, so $frac bnN_n(0,b)=frac{1}{4n-1} binom{4n-1}{2n}$



    Is it a proper usage of the theorem mentioned above? I know how to use it when $S_k> or < ...$, but I'm not sure if I can "transform it" like that when $S_k le or ge ...$.



    Please, correct me where I'm wrong or just tell me any tips. Will be grateful for any help.










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Find a number of paths in random walk from $S_0=0$ to $S_{8n}=0$ satisfying the following terms:



      (a) $S_k le -2$ for $2 le k le 4n-2$



      (b) $S_k > 0$ for $4n le k le 8n$





      Theorem: Let $S_0=a$ and $S_n=b$. $N_n(a,b)$ is the number of paths such that $S_0=a$ and $S_n=b$. If $b>0$ then the number of paths satisfying the following terms: 1) $S_0=0$ and $S_n=b$, 2) there doesn't exist $k in {{1,...,n-1}}$ that $S_k=0$, is equal to $frac bn N_n(0,b)$,



      where $N_n(a,b) = binom{n}{1/2(n+b-a)}$.



      I'm going to use homogeneity in time and in space (random walk properties).



      (I don't want to use Catalan numbers in this exercise or any other "proven formulas".)





      (a) $S_0=0, S_1=-1, S_2=-2,..., S_{4n-2}=-2$ for $S_k le -2$



      then $S_2=0$ and $S_{4n-2}=0$ for $S_k le 0$



      and $S_2=0$ ; $S_{4n-2}=0$ for $S_k ge 0$ (symmetry)



      so $S_2=0$ ; $S_{4n-1}=1$ for $S_k > 0, ;;3 le k le 4n-1$



      and from that $frac bnN_n(0,b)=frac{1}{4n-3} binom{4n-3}{1/2(4n-3+1-0)}=frac{1}{4n-3} binom{4n-3}{2n-1}$



      (b)$S_{4n}=0, S_{8n-1}=1$, so $frac bnN_n(0,b)=frac{1}{4n-1} binom{4n-1}{2n}$



      Is it a proper usage of the theorem mentioned above? I know how to use it when $S_k> or < ...$, but I'm not sure if I can "transform it" like that when $S_k le or ge ...$.



      Please, correct me where I'm wrong or just tell me any tips. Will be grateful for any help.










      share|cite|improve this question















      Find a number of paths in random walk from $S_0=0$ to $S_{8n}=0$ satisfying the following terms:



      (a) $S_k le -2$ for $2 le k le 4n-2$



      (b) $S_k > 0$ for $4n le k le 8n$





      Theorem: Let $S_0=a$ and $S_n=b$. $N_n(a,b)$ is the number of paths such that $S_0=a$ and $S_n=b$. If $b>0$ then the number of paths satisfying the following terms: 1) $S_0=0$ and $S_n=b$, 2) there doesn't exist $k in {{1,...,n-1}}$ that $S_k=0$, is equal to $frac bn N_n(0,b)$,



      where $N_n(a,b) = binom{n}{1/2(n+b-a)}$.



      I'm going to use homogeneity in time and in space (random walk properties).



      (I don't want to use Catalan numbers in this exercise or any other "proven formulas".)





      (a) $S_0=0, S_1=-1, S_2=-2,..., S_{4n-2}=-2$ for $S_k le -2$



      then $S_2=0$ and $S_{4n-2}=0$ for $S_k le 0$



      and $S_2=0$ ; $S_{4n-2}=0$ for $S_k ge 0$ (symmetry)



      so $S_2=0$ ; $S_{4n-1}=1$ for $S_k > 0, ;;3 le k le 4n-1$



      and from that $frac bnN_n(0,b)=frac{1}{4n-3} binom{4n-3}{1/2(4n-3+1-0)}=frac{1}{4n-3} binom{4n-3}{2n-1}$



      (b)$S_{4n}=0, S_{8n-1}=1$, so $frac bnN_n(0,b)=frac{1}{4n-1} binom{4n-1}{2n}$



      Is it a proper usage of the theorem mentioned above? I know how to use it when $S_k> or < ...$, but I'm not sure if I can "transform it" like that when $S_k le or ge ...$.



      Please, correct me where I'm wrong or just tell me any tips. Will be grateful for any help.







      probability-theory stochastic-processes random-walk catalan-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 12 at 16:48

























      asked Nov 11 at 8:46









      MacAbra

      14219




      14219



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2993608%2fnumber-of-random-walks-starting-from-0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2993608%2fnumber-of-random-walks-starting-from-0%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

          ComboBox Display Member on multiple fields

          Is it possible to collect Nectar points via Trainline?