How to solve $int frac{a^x + b^x}{c^x + d^x}:dx$











up vote
3
down vote

favorite












As an extension of this question how would we address integrals of the form:



$$int frac{a^x + b^x}{c^x + d^x}:dx$$



Where $a,b,c,d in mathbb{R}^{+}$ are the values are distinct.



Does anyone have any starting points?










share|cite|improve this question


















  • 8




    $$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
    – Kemono Chen
    Nov 15 at 3:35















up vote
3
down vote

favorite












As an extension of this question how would we address integrals of the form:



$$int frac{a^x + b^x}{c^x + d^x}:dx$$



Where $a,b,c,d in mathbb{R}^{+}$ are the values are distinct.



Does anyone have any starting points?










share|cite|improve this question


















  • 8




    $$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
    – Kemono Chen
    Nov 15 at 3:35













up vote
3
down vote

favorite









up vote
3
down vote

favorite











As an extension of this question how would we address integrals of the form:



$$int frac{a^x + b^x}{c^x + d^x}:dx$$



Where $a,b,c,d in mathbb{R}^{+}$ are the values are distinct.



Does anyone have any starting points?










share|cite|improve this question













As an extension of this question how would we address integrals of the form:



$$int frac{a^x + b^x}{c^x + d^x}:dx$$



Where $a,b,c,d in mathbb{R}^{+}$ are the values are distinct.



Does anyone have any starting points?







integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 15 at 3:23









DavidG

815514




815514








  • 8




    $$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
    – Kemono Chen
    Nov 15 at 3:35














  • 8




    $$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
    – Kemono Chen
    Nov 15 at 3:35








8




8




$$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
– Kemono Chen
Nov 15 at 3:35




$$intfrac{b^x}{c^x+d^x}dx=frac{e^{x (log (b)-log (d))} , _2F_1left(1,frac{log (b)-log (d)}{log (c)-log (d)};frac{log (b)-log (d)}{log (c)-log (d)}+1;-e^{(log (c)-log (d)) x}right)}{log (b)-log (d)}$$
– Kemono Chen
Nov 15 at 3:35










3 Answers
3






active

oldest

votes

















up vote
4
down vote



accepted










By multiplying through by $frac{d^{-x}}{d^{-x}}$, we may assume w.l.o.g. that $d = 1$ and so evaluate
$$int frac{alpha^x + beta^x}{gamma^x + 1} dx .$$



In the special case $a d - b c = 0$ ($alpha = beta gamma$), the integrand simplifies to an exponential function. But generically, we may as well split the integrand into its summands, and so it's enough to evaluate $$int frac{alpha^x dx}{gamma^x + 1}. $$



For $alpha = 1$, an elementary integration gives $$boxed{int frac{dx}{gamma^x + 1} = x - log_{gamma}(gamma^x + 1) + C} .$$



For $alpha neq 1$, substituting $u = alpha^x, du = alpha^x log alpha$ gives (as was essentially observed in the comments)
$$boxed{int frac{alpha^x dx}{gamma^x + 1}
= frac{1}{log alpha} int frac{du}{1 + u^{lambda}} = {}_2 F_1(1, lambda^{-1}; 1 + lambda^{-1}; -u^{lambda}) u + C , quad lambda := log_{alpha} gamma},$$

where ${}_2 F_1$ is Gauss' hypergeometric function.



For generic $lambda$ this expression is the best we can do, but if $lambda$ is rational, say, $lambda = frac{m}{n}$, so that $alpha^m = gamma^n$, the substitution $u = v^n, du = n v^{n - 1} dv$ rationalizes the integral, making it amenable to other familiar techniques:
$$int frac{du}{1 + u^{lambda}} = n int frac{v^{n - 1} dv}{1 + v^m} .$$



For example, for $lambda = 2$ ($gamma = alpha^2$), the integral is
$$int frac{alpha^x dx}{alpha^{2 x} + 1} = frac{1}{log alpha} int frac{du}{1 + u^2} = frac{1}{log alpha} arctan (x log alpha) + C ,$$
and for $lambda = frac{1}{2}$ ($alpha = gamma^2$), the integral is
$$int frac{gamma^{2 x} dx}{gamma^x + 1} = frac{1}{log gamma}(gamma^x - log(gamma^x + 1)) + C .$$






share|cite|improve this answer






























    up vote
    5
    down vote













    Identical to Kemono Chen's comment, write
    $$I=intfrac{b^x}{c^x+d^x},dx=int frac{left(frac{b}{d}right)^x}{left(frac{c}{d}right)^x+1},dx$$ and get
    $$I=frac{left(frac{b}{d}right)^x }{log
    left(frac{b}{d}right)},, _2F_1left(1,frac{log
    left(frac{b}{d}right)}{log left(frac{c}{d}right)};frac{log
    left(frac{b}{d}right)}{log
    left(frac{c}{d}right)}+1;-left(frac{c}{d}right)^xright)$$
    where appears the Gaussian or ordinary hypergeometric function.






    share|cite|improve this answer




























      up vote
      1
      down vote













      $int{frac{a^x+b^x}{c^x+d^x}}dx=int{frac{a^x+b^x}{c^x}frac{1}{1+(d/c)^x}}dx$



      $=int{((a/c)^x+(b/c)^x)(1-(d/c)^x+(d/c)^{2x}- ...)}dx$



      $=int(((a/c)^x-(ad/c^2)^x+....)+((b/c)^x-(bd/c^2)^x+....))dx$



      Which can probably be integrated term-wise into an infinite sum






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














         

        draft saved


        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999164%2fhow-to-solve-int-fracax-bxcx-dx-dx%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        4
        down vote



        accepted










        By multiplying through by $frac{d^{-x}}{d^{-x}}$, we may assume w.l.o.g. that $d = 1$ and so evaluate
        $$int frac{alpha^x + beta^x}{gamma^x + 1} dx .$$



        In the special case $a d - b c = 0$ ($alpha = beta gamma$), the integrand simplifies to an exponential function. But generically, we may as well split the integrand into its summands, and so it's enough to evaluate $$int frac{alpha^x dx}{gamma^x + 1}. $$



        For $alpha = 1$, an elementary integration gives $$boxed{int frac{dx}{gamma^x + 1} = x - log_{gamma}(gamma^x + 1) + C} .$$



        For $alpha neq 1$, substituting $u = alpha^x, du = alpha^x log alpha$ gives (as was essentially observed in the comments)
        $$boxed{int frac{alpha^x dx}{gamma^x + 1}
        = frac{1}{log alpha} int frac{du}{1 + u^{lambda}} = {}_2 F_1(1, lambda^{-1}; 1 + lambda^{-1}; -u^{lambda}) u + C , quad lambda := log_{alpha} gamma},$$

        where ${}_2 F_1$ is Gauss' hypergeometric function.



        For generic $lambda$ this expression is the best we can do, but if $lambda$ is rational, say, $lambda = frac{m}{n}$, so that $alpha^m = gamma^n$, the substitution $u = v^n, du = n v^{n - 1} dv$ rationalizes the integral, making it amenable to other familiar techniques:
        $$int frac{du}{1 + u^{lambda}} = n int frac{v^{n - 1} dv}{1 + v^m} .$$



        For example, for $lambda = 2$ ($gamma = alpha^2$), the integral is
        $$int frac{alpha^x dx}{alpha^{2 x} + 1} = frac{1}{log alpha} int frac{du}{1 + u^2} = frac{1}{log alpha} arctan (x log alpha) + C ,$$
        and for $lambda = frac{1}{2}$ ($alpha = gamma^2$), the integral is
        $$int frac{gamma^{2 x} dx}{gamma^x + 1} = frac{1}{log gamma}(gamma^x - log(gamma^x + 1)) + C .$$






        share|cite|improve this answer



























          up vote
          4
          down vote



          accepted










          By multiplying through by $frac{d^{-x}}{d^{-x}}$, we may assume w.l.o.g. that $d = 1$ and so evaluate
          $$int frac{alpha^x + beta^x}{gamma^x + 1} dx .$$



          In the special case $a d - b c = 0$ ($alpha = beta gamma$), the integrand simplifies to an exponential function. But generically, we may as well split the integrand into its summands, and so it's enough to evaluate $$int frac{alpha^x dx}{gamma^x + 1}. $$



          For $alpha = 1$, an elementary integration gives $$boxed{int frac{dx}{gamma^x + 1} = x - log_{gamma}(gamma^x + 1) + C} .$$



          For $alpha neq 1$, substituting $u = alpha^x, du = alpha^x log alpha$ gives (as was essentially observed in the comments)
          $$boxed{int frac{alpha^x dx}{gamma^x + 1}
          = frac{1}{log alpha} int frac{du}{1 + u^{lambda}} = {}_2 F_1(1, lambda^{-1}; 1 + lambda^{-1}; -u^{lambda}) u + C , quad lambda := log_{alpha} gamma},$$

          where ${}_2 F_1$ is Gauss' hypergeometric function.



          For generic $lambda$ this expression is the best we can do, but if $lambda$ is rational, say, $lambda = frac{m}{n}$, so that $alpha^m = gamma^n$, the substitution $u = v^n, du = n v^{n - 1} dv$ rationalizes the integral, making it amenable to other familiar techniques:
          $$int frac{du}{1 + u^{lambda}} = n int frac{v^{n - 1} dv}{1 + v^m} .$$



          For example, for $lambda = 2$ ($gamma = alpha^2$), the integral is
          $$int frac{alpha^x dx}{alpha^{2 x} + 1} = frac{1}{log alpha} int frac{du}{1 + u^2} = frac{1}{log alpha} arctan (x log alpha) + C ,$$
          and for $lambda = frac{1}{2}$ ($alpha = gamma^2$), the integral is
          $$int frac{gamma^{2 x} dx}{gamma^x + 1} = frac{1}{log gamma}(gamma^x - log(gamma^x + 1)) + C .$$






          share|cite|improve this answer

























            up vote
            4
            down vote



            accepted







            up vote
            4
            down vote



            accepted






            By multiplying through by $frac{d^{-x}}{d^{-x}}$, we may assume w.l.o.g. that $d = 1$ and so evaluate
            $$int frac{alpha^x + beta^x}{gamma^x + 1} dx .$$



            In the special case $a d - b c = 0$ ($alpha = beta gamma$), the integrand simplifies to an exponential function. But generically, we may as well split the integrand into its summands, and so it's enough to evaluate $$int frac{alpha^x dx}{gamma^x + 1}. $$



            For $alpha = 1$, an elementary integration gives $$boxed{int frac{dx}{gamma^x + 1} = x - log_{gamma}(gamma^x + 1) + C} .$$



            For $alpha neq 1$, substituting $u = alpha^x, du = alpha^x log alpha$ gives (as was essentially observed in the comments)
            $$boxed{int frac{alpha^x dx}{gamma^x + 1}
            = frac{1}{log alpha} int frac{du}{1 + u^{lambda}} = {}_2 F_1(1, lambda^{-1}; 1 + lambda^{-1}; -u^{lambda}) u + C , quad lambda := log_{alpha} gamma},$$

            where ${}_2 F_1$ is Gauss' hypergeometric function.



            For generic $lambda$ this expression is the best we can do, but if $lambda$ is rational, say, $lambda = frac{m}{n}$, so that $alpha^m = gamma^n$, the substitution $u = v^n, du = n v^{n - 1} dv$ rationalizes the integral, making it amenable to other familiar techniques:
            $$int frac{du}{1 + u^{lambda}} = n int frac{v^{n - 1} dv}{1 + v^m} .$$



            For example, for $lambda = 2$ ($gamma = alpha^2$), the integral is
            $$int frac{alpha^x dx}{alpha^{2 x} + 1} = frac{1}{log alpha} int frac{du}{1 + u^2} = frac{1}{log alpha} arctan (x log alpha) + C ,$$
            and for $lambda = frac{1}{2}$ ($alpha = gamma^2$), the integral is
            $$int frac{gamma^{2 x} dx}{gamma^x + 1} = frac{1}{log gamma}(gamma^x - log(gamma^x + 1)) + C .$$






            share|cite|improve this answer














            By multiplying through by $frac{d^{-x}}{d^{-x}}$, we may assume w.l.o.g. that $d = 1$ and so evaluate
            $$int frac{alpha^x + beta^x}{gamma^x + 1} dx .$$



            In the special case $a d - b c = 0$ ($alpha = beta gamma$), the integrand simplifies to an exponential function. But generically, we may as well split the integrand into its summands, and so it's enough to evaluate $$int frac{alpha^x dx}{gamma^x + 1}. $$



            For $alpha = 1$, an elementary integration gives $$boxed{int frac{dx}{gamma^x + 1} = x - log_{gamma}(gamma^x + 1) + C} .$$



            For $alpha neq 1$, substituting $u = alpha^x, du = alpha^x log alpha$ gives (as was essentially observed in the comments)
            $$boxed{int frac{alpha^x dx}{gamma^x + 1}
            = frac{1}{log alpha} int frac{du}{1 + u^{lambda}} = {}_2 F_1(1, lambda^{-1}; 1 + lambda^{-1}; -u^{lambda}) u + C , quad lambda := log_{alpha} gamma},$$

            where ${}_2 F_1$ is Gauss' hypergeometric function.



            For generic $lambda$ this expression is the best we can do, but if $lambda$ is rational, say, $lambda = frac{m}{n}$, so that $alpha^m = gamma^n$, the substitution $u = v^n, du = n v^{n - 1} dv$ rationalizes the integral, making it amenable to other familiar techniques:
            $$int frac{du}{1 + u^{lambda}} = n int frac{v^{n - 1} dv}{1 + v^m} .$$



            For example, for $lambda = 2$ ($gamma = alpha^2$), the integral is
            $$int frac{alpha^x dx}{alpha^{2 x} + 1} = frac{1}{log alpha} int frac{du}{1 + u^2} = frac{1}{log alpha} arctan (x log alpha) + C ,$$
            and for $lambda = frac{1}{2}$ ($alpha = gamma^2$), the integral is
            $$int frac{gamma^{2 x} dx}{gamma^x + 1} = frac{1}{log gamma}(gamma^x - log(gamma^x + 1)) + C .$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Nov 15 at 4:40

























            answered Nov 15 at 4:24









            Travis

            58.9k765143




            58.9k765143






















                up vote
                5
                down vote













                Identical to Kemono Chen's comment, write
                $$I=intfrac{b^x}{c^x+d^x},dx=int frac{left(frac{b}{d}right)^x}{left(frac{c}{d}right)^x+1},dx$$ and get
                $$I=frac{left(frac{b}{d}right)^x }{log
                left(frac{b}{d}right)},, _2F_1left(1,frac{log
                left(frac{b}{d}right)}{log left(frac{c}{d}right)};frac{log
                left(frac{b}{d}right)}{log
                left(frac{c}{d}right)}+1;-left(frac{c}{d}right)^xright)$$
                where appears the Gaussian or ordinary hypergeometric function.






                share|cite|improve this answer

























                  up vote
                  5
                  down vote













                  Identical to Kemono Chen's comment, write
                  $$I=intfrac{b^x}{c^x+d^x},dx=int frac{left(frac{b}{d}right)^x}{left(frac{c}{d}right)^x+1},dx$$ and get
                  $$I=frac{left(frac{b}{d}right)^x }{log
                  left(frac{b}{d}right)},, _2F_1left(1,frac{log
                  left(frac{b}{d}right)}{log left(frac{c}{d}right)};frac{log
                  left(frac{b}{d}right)}{log
                  left(frac{c}{d}right)}+1;-left(frac{c}{d}right)^xright)$$
                  where appears the Gaussian or ordinary hypergeometric function.






                  share|cite|improve this answer























                    up vote
                    5
                    down vote










                    up vote
                    5
                    down vote









                    Identical to Kemono Chen's comment, write
                    $$I=intfrac{b^x}{c^x+d^x},dx=int frac{left(frac{b}{d}right)^x}{left(frac{c}{d}right)^x+1},dx$$ and get
                    $$I=frac{left(frac{b}{d}right)^x }{log
                    left(frac{b}{d}right)},, _2F_1left(1,frac{log
                    left(frac{b}{d}right)}{log left(frac{c}{d}right)};frac{log
                    left(frac{b}{d}right)}{log
                    left(frac{c}{d}right)}+1;-left(frac{c}{d}right)^xright)$$
                    where appears the Gaussian or ordinary hypergeometric function.






                    share|cite|improve this answer












                    Identical to Kemono Chen's comment, write
                    $$I=intfrac{b^x}{c^x+d^x},dx=int frac{left(frac{b}{d}right)^x}{left(frac{c}{d}right)^x+1},dx$$ and get
                    $$I=frac{left(frac{b}{d}right)^x }{log
                    left(frac{b}{d}right)},, _2F_1left(1,frac{log
                    left(frac{b}{d}right)}{log left(frac{c}{d}right)};frac{log
                    left(frac{b}{d}right)}{log
                    left(frac{c}{d}right)}+1;-left(frac{c}{d}right)^xright)$$
                    where appears the Gaussian or ordinary hypergeometric function.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 15 at 4:07









                    Claude Leibovici

                    116k1156131




                    116k1156131






















                        up vote
                        1
                        down vote













                        $int{frac{a^x+b^x}{c^x+d^x}}dx=int{frac{a^x+b^x}{c^x}frac{1}{1+(d/c)^x}}dx$



                        $=int{((a/c)^x+(b/c)^x)(1-(d/c)^x+(d/c)^{2x}- ...)}dx$



                        $=int(((a/c)^x-(ad/c^2)^x+....)+((b/c)^x-(bd/c^2)^x+....))dx$



                        Which can probably be integrated term-wise into an infinite sum






                        share|cite|improve this answer

























                          up vote
                          1
                          down vote













                          $int{frac{a^x+b^x}{c^x+d^x}}dx=int{frac{a^x+b^x}{c^x}frac{1}{1+(d/c)^x}}dx$



                          $=int{((a/c)^x+(b/c)^x)(1-(d/c)^x+(d/c)^{2x}- ...)}dx$



                          $=int(((a/c)^x-(ad/c^2)^x+....)+((b/c)^x-(bd/c^2)^x+....))dx$



                          Which can probably be integrated term-wise into an infinite sum






                          share|cite|improve this answer























                            up vote
                            1
                            down vote










                            up vote
                            1
                            down vote









                            $int{frac{a^x+b^x}{c^x+d^x}}dx=int{frac{a^x+b^x}{c^x}frac{1}{1+(d/c)^x}}dx$



                            $=int{((a/c)^x+(b/c)^x)(1-(d/c)^x+(d/c)^{2x}- ...)}dx$



                            $=int(((a/c)^x-(ad/c^2)^x+....)+((b/c)^x-(bd/c^2)^x+....))dx$



                            Which can probably be integrated term-wise into an infinite sum






                            share|cite|improve this answer












                            $int{frac{a^x+b^x}{c^x+d^x}}dx=int{frac{a^x+b^x}{c^x}frac{1}{1+(d/c)^x}}dx$



                            $=int{((a/c)^x+(b/c)^x)(1-(d/c)^x+(d/c)^{2x}- ...)}dx$



                            $=int(((a/c)^x-(ad/c^2)^x+....)+((b/c)^x-(bd/c^2)^x+....))dx$



                            Which can probably be integrated term-wise into an infinite sum







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Nov 15 at 3:49









                            Seth

                            42312




                            42312






























                                 

                                draft saved


                                draft discarded



















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999164%2fhow-to-solve-int-fracax-bxcx-dx-dx%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

                                ComboBox Display Member on multiple fields

                                Is it possible to collect Nectar points via Trainline?