Find $lim _ { z rightarrow z _ { 0 } } frac { f ( z ) } { g ( z ) }$ with f and g holomorphic and $z_0$ a...












0












$begingroup$


Problem : Let $f$ and $g$ holomorphic within the neighbourhood of $z_0$. Knowing that $z_0$ is a zero of order $k$ of $f$, and a zero of order $l$ of $g$ with $l>k$



My Answer : Since f is holomorphic in a neighbourhood of $z_0$ we have :
$$
begin{aligned} f ( z ) & = f left( z _ { 0 } right) + f ^ { prime } left( z _ { 0 } right) left( z - z _ { 0 } right) + frac { f ^ { prime prime } left( z _ { 0 } right) } { 2 ! } left( z - z _ { 0 } right) ^ { 2 } + cdots \ & = left( z - z _ { 0 } right) ^ { l } left[ frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + sum _ { n = l + 1 } ^ { + infty } frac { f ^ { ( n ) } left( z _ { 0 } right) } { n ! } left( z - z _ { 0 } right) ^ { n - l } right] \ & = left( z - z _ { 0 } right) ^ { l } frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + left( z - z _ { 0 } right) ^ { l } F ( z ) end{aligned}
$$



In the same way we obtain :
$$
begin{aligned} g ( z ) & = left( z - z _ { 0 } right) ^ { l } left[ frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + sum _ { n = l + 1 } ^ { + infty } frac { g ^ { ( n ) } left( z _ { 0 } right) } { n ! } left( z - z _ { 0 } right) ^ { n - l } right] \ & = left( z - z _ { 0 } right) ^ { l } frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + left( z - z _ { 0 } right) ^ { l } G ( z ) end{aligned}
$$



My issue : To conclude I would like to write the following steps :
$$
lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = lim _ { z rightarrow z _ { 0 } } left[ frac { frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + F ( z ) } { frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + G ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right) }
$$




  1. Since $z_0$ is a zero of order $l$ of $g$ I know that ${ g ^ { ( l ) } left( z _ { 0 } right) } neq 0$.


  2. $G(z_0)$ and $F(z_0)$ need to be equal to $0$ but I'm not sure how to get this property. Where this property would come from?










share|cite|improve this question











$endgroup$












  • $begingroup$
    But you have an explicit formula for $F(z)$ and $G(z)$, right? So you just need to plug in $z=z_0$ in these formulas.
    $endgroup$
    – Did
    Dec 29 '18 at 11:53
















0












$begingroup$


Problem : Let $f$ and $g$ holomorphic within the neighbourhood of $z_0$. Knowing that $z_0$ is a zero of order $k$ of $f$, and a zero of order $l$ of $g$ with $l>k$



My Answer : Since f is holomorphic in a neighbourhood of $z_0$ we have :
$$
begin{aligned} f ( z ) & = f left( z _ { 0 } right) + f ^ { prime } left( z _ { 0 } right) left( z - z _ { 0 } right) + frac { f ^ { prime prime } left( z _ { 0 } right) } { 2 ! } left( z - z _ { 0 } right) ^ { 2 } + cdots \ & = left( z - z _ { 0 } right) ^ { l } left[ frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + sum _ { n = l + 1 } ^ { + infty } frac { f ^ { ( n ) } left( z _ { 0 } right) } { n ! } left( z - z _ { 0 } right) ^ { n - l } right] \ & = left( z - z _ { 0 } right) ^ { l } frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + left( z - z _ { 0 } right) ^ { l } F ( z ) end{aligned}
$$



In the same way we obtain :
$$
begin{aligned} g ( z ) & = left( z - z _ { 0 } right) ^ { l } left[ frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + sum _ { n = l + 1 } ^ { + infty } frac { g ^ { ( n ) } left( z _ { 0 } right) } { n ! } left( z - z _ { 0 } right) ^ { n - l } right] \ & = left( z - z _ { 0 } right) ^ { l } frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + left( z - z _ { 0 } right) ^ { l } G ( z ) end{aligned}
$$



My issue : To conclude I would like to write the following steps :
$$
lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = lim _ { z rightarrow z _ { 0 } } left[ frac { frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + F ( z ) } { frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + G ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right) }
$$




  1. Since $z_0$ is a zero of order $l$ of $g$ I know that ${ g ^ { ( l ) } left( z _ { 0 } right) } neq 0$.


  2. $G(z_0)$ and $F(z_0)$ need to be equal to $0$ but I'm not sure how to get this property. Where this property would come from?










share|cite|improve this question











$endgroup$












  • $begingroup$
    But you have an explicit formula for $F(z)$ and $G(z)$, right? So you just need to plug in $z=z_0$ in these formulas.
    $endgroup$
    – Did
    Dec 29 '18 at 11:53














0












0








0





$begingroup$


Problem : Let $f$ and $g$ holomorphic within the neighbourhood of $z_0$. Knowing that $z_0$ is a zero of order $k$ of $f$, and a zero of order $l$ of $g$ with $l>k$



My Answer : Since f is holomorphic in a neighbourhood of $z_0$ we have :
$$
begin{aligned} f ( z ) & = f left( z _ { 0 } right) + f ^ { prime } left( z _ { 0 } right) left( z - z _ { 0 } right) + frac { f ^ { prime prime } left( z _ { 0 } right) } { 2 ! } left( z - z _ { 0 } right) ^ { 2 } + cdots \ & = left( z - z _ { 0 } right) ^ { l } left[ frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + sum _ { n = l + 1 } ^ { + infty } frac { f ^ { ( n ) } left( z _ { 0 } right) } { n ! } left( z - z _ { 0 } right) ^ { n - l } right] \ & = left( z - z _ { 0 } right) ^ { l } frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + left( z - z _ { 0 } right) ^ { l } F ( z ) end{aligned}
$$



In the same way we obtain :
$$
begin{aligned} g ( z ) & = left( z - z _ { 0 } right) ^ { l } left[ frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + sum _ { n = l + 1 } ^ { + infty } frac { g ^ { ( n ) } left( z _ { 0 } right) } { n ! } left( z - z _ { 0 } right) ^ { n - l } right] \ & = left( z - z _ { 0 } right) ^ { l } frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + left( z - z _ { 0 } right) ^ { l } G ( z ) end{aligned}
$$



My issue : To conclude I would like to write the following steps :
$$
lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = lim _ { z rightarrow z _ { 0 } } left[ frac { frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + F ( z ) } { frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + G ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right) }
$$




  1. Since $z_0$ is a zero of order $l$ of $g$ I know that ${ g ^ { ( l ) } left( z _ { 0 } right) } neq 0$.


  2. $G(z_0)$ and $F(z_0)$ need to be equal to $0$ but I'm not sure how to get this property. Where this property would come from?










share|cite|improve this question











$endgroup$




Problem : Let $f$ and $g$ holomorphic within the neighbourhood of $z_0$. Knowing that $z_0$ is a zero of order $k$ of $f$, and a zero of order $l$ of $g$ with $l>k$



My Answer : Since f is holomorphic in a neighbourhood of $z_0$ we have :
$$
begin{aligned} f ( z ) & = f left( z _ { 0 } right) + f ^ { prime } left( z _ { 0 } right) left( z - z _ { 0 } right) + frac { f ^ { prime prime } left( z _ { 0 } right) } { 2 ! } left( z - z _ { 0 } right) ^ { 2 } + cdots \ & = left( z - z _ { 0 } right) ^ { l } left[ frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + sum _ { n = l + 1 } ^ { + infty } frac { f ^ { ( n ) } left( z _ { 0 } right) } { n ! } left( z - z _ { 0 } right) ^ { n - l } right] \ & = left( z - z _ { 0 } right) ^ { l } frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + left( z - z _ { 0 } right) ^ { l } F ( z ) end{aligned}
$$



In the same way we obtain :
$$
begin{aligned} g ( z ) & = left( z - z _ { 0 } right) ^ { l } left[ frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + sum _ { n = l + 1 } ^ { + infty } frac { g ^ { ( n ) } left( z _ { 0 } right) } { n ! } left( z - z _ { 0 } right) ^ { n - l } right] \ & = left( z - z _ { 0 } right) ^ { l } frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + left( z - z _ { 0 } right) ^ { l } G ( z ) end{aligned}
$$



My issue : To conclude I would like to write the following steps :
$$
lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = lim _ { z rightarrow z _ { 0 } } left[ frac { frac { f ^ { ( l ) } left( z _ { 0 } right) } { l ! } + F ( z ) } { frac { g ^ { ( l ) } left( z _ { 0 } right) } { l ! } + G ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right) }
$$




  1. Since $z_0$ is a zero of order $l$ of $g$ I know that ${ g ^ { ( l ) } left( z _ { 0 } right) } neq 0$.


  2. $G(z_0)$ and $F(z_0)$ need to be equal to $0$ but I'm not sure how to get this property. Where this property would come from?







complex-analysis complex-numbers holomorphic-functions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 12:11









Oscar Lanzi

13.7k12136




13.7k12136










asked Dec 29 '18 at 11:47









NotAbelianGroupNotAbelianGroup

20911




20911












  • $begingroup$
    But you have an explicit formula for $F(z)$ and $G(z)$, right? So you just need to plug in $z=z_0$ in these formulas.
    $endgroup$
    – Did
    Dec 29 '18 at 11:53


















  • $begingroup$
    But you have an explicit formula for $F(z)$ and $G(z)$, right? So you just need to plug in $z=z_0$ in these formulas.
    $endgroup$
    – Did
    Dec 29 '18 at 11:53
















$begingroup$
But you have an explicit formula for $F(z)$ and $G(z)$, right? So you just need to plug in $z=z_0$ in these formulas.
$endgroup$
– Did
Dec 29 '18 at 11:53




$begingroup$
But you have an explicit formula for $F(z)$ and $G(z)$, right? So you just need to plug in $z=z_0$ in these formulas.
$endgroup$
– Did
Dec 29 '18 at 11:53










1 Answer
1






active

oldest

votes


















2












$begingroup$

A better approach: we can write $f(z)=(z-z_0)^{l} f_1(z)$ where $f_1$ is anlytic in some disk around $z_0$ with $f_1(z_0) neq 0$ and $g(z)=(z-z_0)^{k} g_1(z)$ where $g_1$ is analytic in some disk around $z_0$ and $g_1(z_0) neq 0$. This immediately gives the result since $frac {f(z)} {g(z)} to 0$ if $l >k$ and $frac {f(z)} {g(z)} to frac {f_1(z_0)} {g_1(z_0)}$ if $l=k$. Can you identify the limit in the second case by differentiating the functions $l$ times and setting $z=z_0$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank for your answer. Would the limit in the second case be $frac { f_1 ^ { ( l ) } left( z _ { 0 } right) } { g_1 ^ { ( l ) } left( z _ { 0 } right) }$? However I don't seem to understand how your second case relate to my problem. In my exercise $l>k$, so is the solution $0$ since the $l$-th derivative of $f$ equal to $0$? $$lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right)} = 0$$
    $endgroup$
    – NotAbelianGroup
    Dec 29 '18 at 13:38














Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055763%2ffind-lim-z-rightarrow-z-0-frac-f-z-g-z-with-f-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

A better approach: we can write $f(z)=(z-z_0)^{l} f_1(z)$ where $f_1$ is anlytic in some disk around $z_0$ with $f_1(z_0) neq 0$ and $g(z)=(z-z_0)^{k} g_1(z)$ where $g_1$ is analytic in some disk around $z_0$ and $g_1(z_0) neq 0$. This immediately gives the result since $frac {f(z)} {g(z)} to 0$ if $l >k$ and $frac {f(z)} {g(z)} to frac {f_1(z_0)} {g_1(z_0)}$ if $l=k$. Can you identify the limit in the second case by differentiating the functions $l$ times and setting $z=z_0$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank for your answer. Would the limit in the second case be $frac { f_1 ^ { ( l ) } left( z _ { 0 } right) } { g_1 ^ { ( l ) } left( z _ { 0 } right) }$? However I don't seem to understand how your second case relate to my problem. In my exercise $l>k$, so is the solution $0$ since the $l$-th derivative of $f$ equal to $0$? $$lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right)} = 0$$
    $endgroup$
    – NotAbelianGroup
    Dec 29 '18 at 13:38


















2












$begingroup$

A better approach: we can write $f(z)=(z-z_0)^{l} f_1(z)$ where $f_1$ is anlytic in some disk around $z_0$ with $f_1(z_0) neq 0$ and $g(z)=(z-z_0)^{k} g_1(z)$ where $g_1$ is analytic in some disk around $z_0$ and $g_1(z_0) neq 0$. This immediately gives the result since $frac {f(z)} {g(z)} to 0$ if $l >k$ and $frac {f(z)} {g(z)} to frac {f_1(z_0)} {g_1(z_0)}$ if $l=k$. Can you identify the limit in the second case by differentiating the functions $l$ times and setting $z=z_0$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank for your answer. Would the limit in the second case be $frac { f_1 ^ { ( l ) } left( z _ { 0 } right) } { g_1 ^ { ( l ) } left( z _ { 0 } right) }$? However I don't seem to understand how your second case relate to my problem. In my exercise $l>k$, so is the solution $0$ since the $l$-th derivative of $f$ equal to $0$? $$lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right)} = 0$$
    $endgroup$
    – NotAbelianGroup
    Dec 29 '18 at 13:38
















2












2








2





$begingroup$

A better approach: we can write $f(z)=(z-z_0)^{l} f_1(z)$ where $f_1$ is anlytic in some disk around $z_0$ with $f_1(z_0) neq 0$ and $g(z)=(z-z_0)^{k} g_1(z)$ where $g_1$ is analytic in some disk around $z_0$ and $g_1(z_0) neq 0$. This immediately gives the result since $frac {f(z)} {g(z)} to 0$ if $l >k$ and $frac {f(z)} {g(z)} to frac {f_1(z_0)} {g_1(z_0)}$ if $l=k$. Can you identify the limit in the second case by differentiating the functions $l$ times and setting $z=z_0$?






share|cite|improve this answer









$endgroup$



A better approach: we can write $f(z)=(z-z_0)^{l} f_1(z)$ where $f_1$ is anlytic in some disk around $z_0$ with $f_1(z_0) neq 0$ and $g(z)=(z-z_0)^{k} g_1(z)$ where $g_1$ is analytic in some disk around $z_0$ and $g_1(z_0) neq 0$. This immediately gives the result since $frac {f(z)} {g(z)} to 0$ if $l >k$ and $frac {f(z)} {g(z)} to frac {f_1(z_0)} {g_1(z_0)}$ if $l=k$. Can you identify the limit in the second case by differentiating the functions $l$ times and setting $z=z_0$?







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 29 '18 at 12:03









Kavi Rama MurthyKavi Rama Murthy

74.9k53270




74.9k53270












  • $begingroup$
    Thank for your answer. Would the limit in the second case be $frac { f_1 ^ { ( l ) } left( z _ { 0 } right) } { g_1 ^ { ( l ) } left( z _ { 0 } right) }$? However I don't seem to understand how your second case relate to my problem. In my exercise $l>k$, so is the solution $0$ since the $l$-th derivative of $f$ equal to $0$? $$lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right)} = 0$$
    $endgroup$
    – NotAbelianGroup
    Dec 29 '18 at 13:38




















  • $begingroup$
    Thank for your answer. Would the limit in the second case be $frac { f_1 ^ { ( l ) } left( z _ { 0 } right) } { g_1 ^ { ( l ) } left( z _ { 0 } right) }$? However I don't seem to understand how your second case relate to my problem. In my exercise $l>k$, so is the solution $0$ since the $l$-th derivative of $f$ equal to $0$? $$lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right)} = 0$$
    $endgroup$
    – NotAbelianGroup
    Dec 29 '18 at 13:38


















$begingroup$
Thank for your answer. Would the limit in the second case be $frac { f_1 ^ { ( l ) } left( z _ { 0 } right) } { g_1 ^ { ( l ) } left( z _ { 0 } right) }$? However I don't seem to understand how your second case relate to my problem. In my exercise $l>k$, so is the solution $0$ since the $l$-th derivative of $f$ equal to $0$? $$lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right)} = 0$$
$endgroup$
– NotAbelianGroup
Dec 29 '18 at 13:38






$begingroup$
Thank for your answer. Would the limit in the second case be $frac { f_1 ^ { ( l ) } left( z _ { 0 } right) } { g_1 ^ { ( l ) } left( z _ { 0 } right) }$? However I don't seem to understand how your second case relate to my problem. In my exercise $l>k$, so is the solution $0$ since the $l$-th derivative of $f$ equal to $0$? $$lim _ { z rightarrow z _ { 0 } } left[ frac { f ( z ) } { g ( z ) } right] = frac { f ^ { ( l ) } left( z _ { 0 } right) } { g ^ { ( l ) } left( z _ { 0 } right)} = 0$$
$endgroup$
– NotAbelianGroup
Dec 29 '18 at 13:38




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055763%2ffind-lim-z-rightarrow-z-0-frac-f-z-g-z-with-f-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

ComboBox Display Member on multiple fields

Is it possible to collect Nectar points via Trainline?